SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Antolin Beatriz) "

Sökning: WFRF:(Antolin Beatriz)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Broms, Jonas, et al. (författare)
  • Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates.
  • 2015
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 1096-9861 .- 0021-9967. ; 523:3, s. 359-380
  • Tidskriftsartikel (refereegranskat)abstract
    • The habenula is a phylogenetically conserved brain structure in the epithalamus. It is a major node in the information flow between fronto-limbic brain regions and monoaminergic brainstem nuclei, thus anatomically and functionally ideally positioned to regulate emotional, motivational and cognitive behaviors. Consequently, the habenula may be critically important in the pathophysiology of psychiatric disorders such as addiction and depression. Here we investigated the expression pattern of GPR151, a G coupled-protein receptor (GPCR), whose mRNA has been identified as highly and specifically enriched in habenular neurons by in situ hybridization and Translating Ribosome Affinity Purification (TRAP). In the present immunohistochemical study we demonstrate a pronounced and highly specific expression of the GPR151 protein in the medial and lateral habenula of rodent brain. Specific expression was also seen in efferent habenular fibers projecting to the interpeduncular nucleus, the rostromedial tegmental area, the rhabdoid nucleus, the mesencephalic raphe nuclei and the dorsal tegmental nucleus. Using confocal microscopy and quantitative colocalization analysis we found that GPR151 expressing axons and terminals overlap with cholinergic, substance P-ergic and glutamatergic markers. Virtually identical expression pattern was observed in rat, mouse and zebrafish brains. Our data demonstrate that GPR151 is highly conserved, specific for a subdivision of the habenular neurocircuitry, and constitutes a promising novel target for psychiatric drug development. J. Comp. Neurol., 2014. © 2014 Wiley Periodicals, Inc.
  •  
2.
  •  
3.
  • Macías García, Beatriz, et al. (författare)
  • The mitochondria of stallion spermatozoa are more sensitive than the plasmalemma to osmotic induced stress: role of c-Jun N-terminal Kinase (JNKs) pathway
  • 2012
  • Ingår i: Journal of Andrology. - Schaumburg, IL, United States : American Society of Andrology. - 0196-3635 .- 1939-4640. ; 33:1, s. 105-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Cryopreservation introduces extreme temperature and osmolality changes that impart lethal and sublethal effects on spermatozoa. Additionally, there is evidence that the osmotic stress induced by cryopreservation causes oxidative stress to spermatozoa. The main sources of reactive oxygen species in mammalian sperm are the mitochondria. In view of this, the aim of our study was to test whether or not osmotic stress was able to induce mitochondrial damage and to explore the osmotic tolerance of the mitochondria of stallion spermatozoa. Ejaculates from 7 stallions were subjected to osmolalities ranging from 75 to 1500 mOsm/kg, and the effect on sperm membrane integrity and mitochondrial membrane potential was studied. Additionally, the effects of changes in osmolality from hyposmotic to isosmotic and from hyperosmotic to isosmotic solutions were studied (osmotic excursions). The cellular volume of stallion spermatozoa under isosmotic conditions was 20.4 ± 0.33 μm3. When exposed to low osmolality, the stallion spermatozoa behaved like a linear osmometer, whereas exposure to high osmolalities up to 900 mOsm/kg resulted in decreased sperm volume. Although sperm membranes were relatively resistant to changes in osmolality, mitochondrial membrane potential decreased when osmolalities were low or very high (10.7 ± 1.74 and 16.5 ± 1.70 at 75 and 150 mOsm/kg, respectively, and 13.1 ± 1.83 at 1500 mOsm/kg), whereas in isosmolar controls the percentage of stallion sperm mitochondria with a high membrane potential was 41.1 ± 1.69 (P < .01). Osmotic excursions induced greater damage than exposure of spermatozoa to a given nonphysiologic osmolality, and again the mitochondria were more prone to damage induced by osmotic excursions than was the sperm plasma membrane. In search of intracellular components that could mediate these changes, we have detected for the first time the c-Jun N-terminal kinase 1/2 in stallion spermatozoa, which are apparently involved in the regulation of the viability of these cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy