SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Arcavi Iair) "

Search: WFRF:(Arcavi Iair)

  • Result 1-18 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aartsen, M. G., et al. (author)
  • The Detection Of A Sn Iin In Optical Follow-Up Observations Of Icecube Neutrino Events
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 811:1
  • Journal article (peer-reviewed)abstract
    • The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0.degrees 54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2 sigma within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.
  •  
2.
  • Arcavi, Iair, et al. (author)
  • Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star
  • 2017
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7679, s. 210-213
  • Journal article (peer-reviewed)abstract
    • Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining(1). Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability(2-5). That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.
  •  
3.
  • Cao, Yi, et al. (author)
  • A strong ultraviolet pulse from a newborn type Ia supernova
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 521:7552, s. 328-
  • Journal article (peer-reviewed)abstract
    • Type Ia supernovae(1) are destructive explosions of carbon-oxygen white dwarfs(2,3). Although they are used empirically to measure cosmological distances(4-6), the nature of their progenitors remains mysterious(3). One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion(3,7,8). Here we report observations with the Swift Space Telescope of strong but declining ultraviolet emission from a type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star(9), and therefore provides evidence that some type Ia supernovae arise from the single degenerate channel.
  •  
4.
  • Clark, Peter, et al. (author)
  • LSQ13ddu : a rapidly evolving stripped-envelope supernova with early circumstellar interaction signatures
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 492:2, s. 2208-2228
  • Journal article (peer-reviewed)abstract
    • This paper describes the rapidly evolving and unusual supernova LSQ13ddu, discovered by the La Silla-QUEST survey. LSQ13ddu displayed a rapid rise of just 4.8 +/- 0.9 d to reach a peak brightness of -19.70 +/- 0.02 mag in the LSQgr band. Early spectra of LSQ13ddu showed the presence of weak and narrow He I features arising from interaction with circumstellar material (CSM). These interaction signatures weakened quickly, with broad features consistent with those seen in stripped-envelope SNe becoming dominant around two weeks after maximum. The narrow He I velocities are consistent with the wind velocities of luminous blue variables but its spectra lack the typically seen hydrogen features. The fast and bright early light curve is inconsistent with radioactive Ni-56 powering but can be explained through a combination of CSM interaction and an underlying Ni-56 decay component that dominates the later time behaviour of LSQ13ddu. Based on the strength of the underlying broad features, LSQ13ddu appears deficient in He compared to standard SNe Ib.
  •  
5.
  • Hosseinzadeh, Griffin, et al. (author)
  • Short-lived Circumstellar Interaction in the Low-luminosity Type IIP SN 2016bkv
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 861:1
  • Journal article (peer-reviewed)abstract
    • While interaction with circumstellar material is known to play an important role in Type. IIn supernovae (SNe), analyses of the more common SNe IIP and IIL have not traditionally included interaction as a significant power source. However, recent campaigns to observe SNe within days of explosion have revealed narrow emission lines of high-ionization species in the earliest spectra of luminous SNe II of all subclasses. These flash ionization features indicate the presence of a confined shell of material around the progenitor star. Here we present the first low-luminosity (LL) SN to show flash ionization features, SN 2016bkv. This SN peaked at M-V = -16 mag and has Ha expansion velocities under 1350 km s(-1) around maximum light, placing it at the faint/slow end of the distribution of SNe IIP (similar to SN 2005cs). The light-curve shape of SN 2016bkv is also extreme among SNe IIP. A very strong initial peak could indicate additional luminosity from circumstellar interaction. A very small fall from the plateau to the nickel tail indicates unusually large production of radioactive nickel compared to other LL SNe IIP. A comparison between nebular spectra of SN. 2016bkv and models raises the possibility that SN. 2016bkv is an electron-capture supernova.
  •  
6.
  • Hosseinzadeh, Griffin, et al. (author)
  • Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 836:2
  • Journal article (peer-reviewed)abstract
    • Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material (CSM). We report optical observations of six new SNe Ibn: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. This brings the sample size of such objects in the literature to 22. We also report new data, including a near-infrared spectrum, on the Type Ibn SN 2015U. In order to characterize the class as a whole, we analyze the photometric and spectroscopic properties of the full Type Ibn sample. We find that, despite the expectation that CSM interaction would generate a heterogeneous set of light curves, as seen in SNe IIn, most Type Ibn light curves are quite similar in shape, declining at rates around 0.1 mag day(-1) during the first month after maximum light, with a few significant exceptions. Early spectra of SNe Ibn come in at least two varieties, one that shows narrow P Cygni lines and another dominated by broader emission lines, both around maximum light, which may be an indication of differences in the state of the progenitor system at the time of explosion. Alternatively, the spectral diversity could arise from viewing-angle effects or merely from a lack of early spectroscopic coverage. Together, the relative light curve homogeneity and narrow spectral features suggest that the CSM consists of a spatially confined shell of helium surrounded by a less dense extended wind.
  •  
7.
  • Li, Wenxiong, et al. (author)
  • Rapidly Evolving Transients in Archival ZTF Public Alerts
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 955:2
  • Journal article (peer-reviewed)abstract
    • We search the archival Zwicky Transient Facility public survey for rapidly evolving transient (RET) candidates based on well-defined criteria between 2018 May and 2021 December. The search yielded 19 bona fide RET candidates, corresponding to a discovery rate of ∼5.2 events per year. Even with a Galactic latitude cut of 20°, eight of the 19 events (∼42%) are Galactic, including one with a light-curve shape closely resembling that of the GW170817 kilonova (KN). An additional event is a nova in M31. Four out of the 19 events (∼21%) are confirmed extragalactic RETs (one confirmed here for the first time) and the origin of six additional events cannot be determined. We did not find any extragalactic events resembling the GW170817 KN, from which we obtain an upper limit on the volumetric rate of GW170817-like KNe of R ≤ 2400 Gpc−3 yr−1 (95% confidence). These results can be used for quantifying contaminants to RET searches in transient alert streams, specifically when searching for KNe independently of gravitational-wave and gamma-ray-burst triggers.
  •  
8.
  • Müller-Bravo, Tomás E., et al. (author)
  • The low-luminosity Type II SN2016aqf : a well-monitored spectral evolution of the Ni/Fe abundance ratio
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 497:1, s. 361-377
  • Journal article (peer-reviewed)abstract
    • Low-luminosity Type II supernovae (LL SNe II) make up the low explosion energy end of core-collapse SNe, but their study and physical understanding remain limited. We present SN 2016aqf, an LL SN II with extensive spectral and photometric coverage. We measure a V-band peak magnitude of −14.58 mag, a plateau duration of ∼100 d, and an inferred 56Ni mass of 0.008 ± 0.002 M⊙. The peak bolometric luminosity, Lbol ≈ 1041.4 erg s−1, and its spectral evolution are typical of other SNe in the class. Using our late-time spectra, we measure the [O i] λλ6300, 6364 lines, which we compare against SN II spectral synthesis models to constrain the progenitor zero-age main-sequence mass. We find this to be 12 ± 3 M⊙. Our extensive late-time spectral coverage of the [Fe ii] λ7155 and [Ni ii] λ7378 lines permits a measurement of the Ni/Fe abundance ratio, a parameter sensitive to the inner progenitor structure and explosion mechanism dynamics. We measure a constant abundance ratio evolution of 0.081+0.009−0.010 and argue that the best epochs to measure the ratio are at ∼200–300 d after explosion. We place this measurement in the context of a large sample of SNe II and compare against various physical, light-curve, and spectral parameters, in search of trends that might allow indirect ways of constraining this ratio. We do not find correlations predicted by theoretical models; however, this may be the result of the exact choice of parameters and explosion mechanism in the models, the simplicity of them, and/or primordial contamination in the measured abundance ratio.
  •  
9.
  • Ni, Yuan Qi, et al. (author)
  • Infant-phase reddening by surface Fe-peak elements in a normal type Ia supernova
  • 2022
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:5, s. 568-576
  • Journal article (peer-reviewed)abstract
    • Type Ia supernovae are thermonuclear explosions of white dwarf stars. They play a central role in the chemical evolution of the Universe and are an important measure of cosmological distances. However, outstanding questions remain about their origins. Despite extensive efforts to obtain natal information from their earliest signals, observations have thus far failed to identify how the majority of them explode. Here, we present infant-phase detections of SN 2018aoz from a very low brightness of −10.5 AB absolute magnitude, revealing a hitherto unseen plateau in the B band that results in a rapid redward colour evolution between 1.0 and 12.4 hours after the estimated epoch of first light. The missing B-band flux is best explained by line-blanket absorption from Fe-peak elements in the outer 1% of the ejected mass. The observed B − V colour evolution of the supernova also matches the prediction from an over-density of Fe-peak elements in the same outer 1% of the ejected mass, whereas bluer colours are expected from a purely monotonic distribution of Fe-peak elements. The presence of excess nucleosynthetic material in the extreme outer layers of the ejecta points to enhanced surface nuclear burning or extended subsonic mixing processes in some normal type Ia SN explosions.
  •  
10.
  • Ofek, Eran O., et al. (author)
  • INTERACTION-POWERED SUPERNOVAE : RISE-TIME VERSUS PEAK-LUMINOSITY CORRELATION AND THE SHOCK-BREAKOUT VELOCITY
  • 2014
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 788:2, s. 154-
  • Journal article (peer-reviewed)abstract
    • Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock-breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a specific relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., similar to 10(4) km s(-1)). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe ( e. g., superluminous SNe) can be used to rule out the interaction model for a class of events.
  •  
11.
  • Rubin, Adam, et al. (author)
  • TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 820:1
  • Journal article (peer-reviewed)abstract
    • During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with > 5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1-3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2-20) x 10(51) erg/(10 M-circle dot), and have a mean energy per unit mass of < E/M > = 0.85 x 10(51) erg/(10 M-circle dot), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of Ni-56 produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate (Delta m(15)), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events.
  •  
12.
  • Schulze, Steve, et al. (author)
  • The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae
  • 2021
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 255:2
  • Journal article (peer-reviewed)abstract
    • Several thousand core-collapse supernovae (CCSNe) of different flavors have been discovered so far. However, identifying their progenitors has remained an outstanding open question in astrophysics. Studies of SN host galaxies have proven to be powerful in providing constraints on the progenitor populations. In this paper, we present all CCSNe detected between 2009 and 2017 by the Palomar Transient Factory. This sample includes 888 SNe of 12 distinct classes out to redshift z approximate to 1. We present the photometric properties of their host galaxies from the far-ultraviolet to the mid-infrared and model the host-galaxy spectral energy distributions to derive physical properties. The galaxy mass function of Type Ic, Ib, IIb, II, and IIn SNe ranges from 10(5) to 10(11.5) M (circle dot), probing the entire mass range of star-forming galaxies down to the least-massive star-forming galaxies known. Moreover, the galaxy mass distributions are consistent with models of star-formation-weighted mass functions. Regular CCSNe are hence direct tracers of star formation. Small but notable differences exist between some of the SN classes. Type Ib/c SNe prefer galaxies with slightly higher masses (i.e., higher metallicities) and star formation rates than Type IIb and II SNe. These differences are less pronounced than previously thought. H-poor superluminous supernovae (SLSNe) and SNe Ic-BL are scarce in galaxies above 10(10) M (circle dot). Their progenitors require environments with metallicities of < 0.4 and < 1 solar, respectively. In addition, the hosts of H-poor SLSNe are dominated by a younger stellar population than all other classes of CCSNe. Our findings corroborate the notion that low metallicity and young age play an important role in the formation of SLSN progenitors.
  •  
13.
  • Silverman, Jeffrey M., et al. (author)
  • SN 2000cx and SN 2013bh : extremely rare, nearly twin Type Ia supernovae
  • 2013
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 436:2, s. 1225-1237
  • Journal article (peer-reviewed)abstract
    • The Type Ia supernova (SN Ia) SN 2000cx was one of the most peculiar transients ever discovered, with a rise to maximum brightness typical of a SN Ia, but a slower decline and a higher photospheric temperature. 13 yr later SN 2013bh (also known as iPTF13abc), a near identical twin, was discovered and we obtained optical and near-infrared photometry and low-resolution optical spectroscopy from discovery until about 1 month past r-band maximum brightness. The spectra of both objects show iron-group elements [Co ii, Ni ii, Fe ii, Fe iii and high-velocity features (HVFs) of Ti ii], intermediate-mass elements (Si ii, Si iii and S ii) and separate normal velocity features (similar to 12 000 km s(-1)) and HVFs (similar to 24 000 km s(-1)) of Ca ii. Persistent absorption from Fe iii and Si iii, along with the colour evolution, implies high blackbody temperatures for SNe 2013bh and 2000cx (similar to 12 000 K). Both objects lack narrow Na i D absorption and exploded in the outskirts of their hosts, indicating that the SN environments were relatively free of interstellar or circumstellar material and may imply that the progenitors came from a relatively old and low-metallicity stellar population. Models of SN 2000cx, seemingly applicable to SN 2013bh, imply the production of up to similar to 1 M-circle dot of Ni-56 and (4.3-5.5) x 10(-3) M-circle dot of fast-moving Ca ejecta.
  •  
14.
  • Singh, Mridweeka, et al. (author)
  • The Fast-evolving Type Ib Supernova SN 2015dj in NGC 7371
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 909:2
  • Journal article (peer-reviewed)abstract
    • We present the detailed optical evolution of a Type Ib SN 2015dj in NGC 7371, using data spanning up to similar to 170 days after discovery. SN 2015dj shares similarity in light-curve shape with SN 2007gr and peaks at M-V = -17.37 +/- 0.02 mag. Analytical modeling of the quasi bolometric light curve yields 0.06 +/- 0.01 M-circle dot of Ni-56, ejecta mass = M-ej = 1.4(-0.5)(+1.3) M-circle dot, and kinetic energy E-k = 0.7(-0.3)(+0.6) x 10(51) erg. The spectral features show a fast evolution and resemble those of spherically symmetric ejecta. The analysis of nebular phase spectral lines indicates a progenitor mass between 13-20 M-circle dot, suggesting a binary scenario.
  •  
15.
  • Strotjohann, Nora L., et al. (author)
  • SEARCH FOR PRECURSOR ERUPTIONS AMONG TYPE IIB SUPERNOVAE
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 811:2
  • Journal article (peer-reviewed)abstract
    • The progenitor stars of several Type IIb supernovae (SNe) show indications of extended hydrogen envelopes. These envelopes might be the outcome of luminous energetic pre-explosion events, so-called precursor eruptions. We use the Palomar Transient Factory (PTF) pre-explosion observations of a sample of 27 nearby SNe IIb to look for such precursors during the final years prior to the SN explosion. No precursors are found when combining the observations in 15-day bins, and we calculate the absolute-magnitude-dependent upper limit on the precursor rate. At the 90% confidence level, SNe IIb have on average <0.86 precursors as bright as an absolute R-band magnitude of -14 in the final 3.5 years before the explosion and <0.56 events over the final year. In contrast, precursors among SNe IIn have a greater than or similar to 5 times higher rate. The kinetic energy required to unbind a low-mass stellar envelope is comparable to the radiated energy of a few-weeks-long precursor that would be detectable for the closest SNe in our sample. Therefore, mass ejections, if they are common in such SNe, are radiatively inefficient or have durations longer than months. Indeed, when using 60-day bins, a faint precursor candidate is detected prior to SN 2012cs (similar to 2% false-alarm probability). We also report the detection of the progenitor of SN 2011dh that does not show detectable variability over the final two years before the explosion. The suggested progenitor of SN 2012P is still present, and hence is likely a compact star cluster or an unrelated object.
  •  
16.
  • Vreeswijk, Paul M., et al. (author)
  • ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 835:1
  • Journal article (peer-reviewed)abstract
    • We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (similar to 10 days) and brightness relative to the main peak (2-3 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration (>30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of Ni-56 and Co-56, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.
  •  
17.
  • Vreeswijk, Paul M., et al. (author)
  • THE HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA iPTF 13ajg AND ITS HOST GALAXY IN ABSORPTION AND EMISSION
  • 2014
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 797:1, s. 24-
  • Journal article (peer-reviewed)abstract
    • We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M-u,M-AB = -22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 x 10(44) erg s(-1), while the estimated total radiated energy is 1.3 x 10(51) erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) = 11.94 +/- 0.06, log N(Mg II) = 14.7 +/- 0.3, and log N(Fe II) = 14.25 +/- 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, Delta V = 76 km s(-1), indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR[O II] < 0.07 M-circle dot yr(-1). Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g(AB) approximate to 27.0 and R-AB >= 26.0 mag, corresponding to M-B,M-Vega greater than or similar to -17.7 mag.
  •  
18.
  • Wang, Qinan, et al. (author)
  • Revealing the Progenitor of SN 2021zby through Analysis of the TESS Shock-cooling Light Curve
  • 2023
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 943:2
  • Journal article (peer-reviewed)abstract
    • We present early observations and analysis of the double-peaked Type IIb supernova (SN IIb) SN 2021zby. TESS captured the prominent early shock-cooling peak of SN 2021zby within the first ∼10 days after explosion with a 30 minute cadence. We present optical and near-infrared spectral series of SN 2021zby, including three spectra during the shock-cooling phase. Using a multiband model fit, we find that the inferred properties of its progenitor are consistent with a red supergiant or yellow supergiant, with an envelope mass of ∼0.30–0.65 M⊙ and an envelope radius of ∼120–300 R⊙. These inferred progenitor properties are similar to those of other SNe IIb with a double-peaked feature, such as SNe 1993J, 2011dh, 2016gkg, and 2017jgh. This study further validates the importance of the high cadence and early coverage in resolving the shape of the shock-cooling light curve, while the multiband observations, particularly UV, are also necessary to fully constrain the progenitor properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-18 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view