SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arslan Mehmet Enes) "

Sökning: WFRF:(Arslan Mehmet Enes)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aydin, Nursah, et al. (författare)
  • Ameliorative Effects by Hexagonal Boron Nitride Nanoparticles against Beta Amyloid Induced Neurotoxicity
  • 2022
  • Ingår i: Nanomaterials. - : MDPI AG. - 2079-4991. ; 12:15, s. 2690-
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is considered as the most common neurodegenerative disease. Extracellular amyloid beta (A beta) deposition is a hallmark of AD. The options based on degradation and clearance of A beta are preferred as promising therapeutic strategies for AD. Interestingly, recent findings indicate that boron nanoparticles not only act as a carrier but also play key roles in mediating biological effects. In the present study, the aim was to investigate the effects of different concentrations (0-500 mg/L) of hexagonal boron nitride nanoparticles (hBN-NPs) against neurotoxicity by beta amyloid (A beta(1-42)) in differentiated human SH-SY5Y neuroblastoma cell cultures for the first time. The synthesized hBN-NPs were characterized by X-ray diffraction (XRD) measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A beta(1-42)-induced neurotoxicity and therapeutic potential by hBN-NPs were assessed on differentiated SH-SY5Y cells using MTT and LDH release assays. Levels of total antioxidant capacity (TAC) and total oxidant status (TOS), expression levels of genes associated with AD and cellular morphologies were examined. The exposure to A beta(1-42) significantly decreased the rates of viable cells which was accompanied by elevated TOS level. A beta(1-42) induced both apoptotic and necrotic cell death. A beta exposure led to significant increases in expression levels of APOE, BACE 1, EGFR, NCTSN and TNF-alpha genes and significant decreases in expression levels of ADAM 10, APH1A, BDNF, PSEN1 and PSENEN genes (p < 0.05). All the A beta(1-42)-induced neurotoxic insults were inhibited by the applications with hBN-NPs. hBN-NPs also suppressed the remarkable elevation in the signal for A beta following exposure to A beta(1-42) for 48 h. Our results indicated that hBN-NPs could significantly prevent the neurotoxic damages by A beta. Thus, hBN-NPs could be a novel and promising anti-AD agent for effective drug development, bio-nano imaging or drug delivery strategies.
  •  
2.
  • Akbaba, Yusuf, et al. (författare)
  • Novel tetrahydronaphthalen-1-yl-phenethyl ureas : synthesis and dual antibacterial-anticancer activities
  • 2024
  • Ingår i: Journal of enzyme inhibition and medicinal chemistry (Print). - : Informa UK Limited. - 1475-6366 .- 1475-6374. ; 39:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer and antibiotic-resistant bacterial infections are significant global health challenges. The resistance developed in cancer treatments intensifies therapeutic difficulties. In addressing these challenges, this study synthesised a series of N,N '-dialkyl urea derivatives containing methoxy substituents on phenethylamines. Using isocyanate for the efficient synthesis yielded target products 14-18 in 73-76% returns. Subsequently, their antibacterial and anticancer potentials were assessed. Cytotoxicity tests on cancer cell lines, bacterial strains, and a healthy fibroblast line revealed promising outcomes. All derivatives demonstrated robust antibacterial activity, with MIC values ranging from 0.97 to 15.82 mu M. Notably, compounds 14 and 16 were particularly effective against the HeLa cell line, while compounds 14, 15, and 17 showed significant activity against the SH-SY5Y cell line. Importantly, these compounds had reduced toxicity to healthy fibroblast cells than to cancer cells, suggesting their potential as dual-functioning agents targeting both cancer and bacterial infections.
  •  
3.
  • Altay, Özlem, et al. (författare)
  • Combined Metabolic Activators with Different NAD+ Precursors Improve Metabolic Functions in the Animal Models of Neurodegenerative Diseases
  • 2024
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mitochondrial dysfunction and metabolic abnormalities are acknowledged as significant factors in the onset of neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). Our research has demonstrated that the use of combined metabolic activators (CMA) may alleviate metabolic dysfunctions and stimulate mitochondrial metabolism. Therefore, the use of CMA could potentially be an effective therapeutic strategy to slow down or halt the progression of PD and AD. CMAs include substances such as the glutathione precursors (L-serine and N-acetyl cysteine), the NAD+ precursor (nicotinamide riboside), and L-carnitine tartrate. Methods: Here, we tested the effect of two different formulations, including CMA1 (nicotinamide riboside, L-serine, N-acetyl cysteine, L-carnitine tartrate), and CMA2 (nicotinamide, L-serine, N-acetyl cysteine, L-carnitine tartrate), as well as their individual components, on the animal models of AD and PD. We assessed the brain and liver tissues for pathological changes and immunohistochemical markers. Additionally, in the case of PD, we performed behavioral tests and measured responses to apomorphine-induced rotations. Findings: Histological analysis showed that the administration of both CMA1 and CMA2 formulations led to improvements in hyperemia, degeneration, and necrosis in neurons for both AD and PD models. Moreover, the administration of CMA2 showed a superior effect compared to CMA1. This was further corroborated by immunohistochemical data, which indicated a reduction in immunoreactivity in the neurons. Additionally, notable metabolic enhancements in liver tissues were observed using both formulations. In PD rat models, the administration of both formulations positively influenced the behavioral functions of the animals. Interpretation: Our findings suggest that the administration of both CMA1 and CMA2 markedly enhanced metabolic and behavioral outcomes, aligning with neuro-histological observations. These findings underscore the promise of CMA2 administration as an effective therapeutic strategy for enhancing metabolic parameters and cognitive function in AD and PD patients.
  •  
4.
  • Arslan, Mehmet Enes, et al. (författare)
  • Costunolide and Parthenolide Ameliorate MPP plus Induced Apoptosis in the Cellular Parkinson's Disease Model
  • 2023
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Monoamine oxidase B (MAO-B) is an enzyme that metabolizes several chemicals, including dopamine. MAO-B inhibitors are used in the treatment of Parkinson's Disease (PD), and the inhibition of this enzyme reduces dopamine turnover and oxidative stress. The absence of dopamine results in PD pathogenesis originating from decreased Acetylcholinesterase (AChE) activity and elevated oxidative stress. Here, we performed a molecular docking analysis for the potential use of costunolide and parthenolide terpenoids as potential MAO-B inhibitors in the treatment of PD. Neuroprotective properties of plant-originated costunolide and parthenolide terpenoids were investigated in a cellular PD model that was developed by using MPP+ toxicity. We investigated neuroprotection mechanisms through the analysis of oxidative stress parameters, acetylcholinesterase activity and apoptotic cell death ratios. Our results showed that 100 mu g/mL and 50 mu g/mL of costunolide, and 50 mu g/mL of parthenolide applied to the cellular disease model ameliorated the cytotoxicity caused by MPP+ exposure. We found that acetylcholinesterase activity assays exhibited that terpenoids could ameliorate and restore the enzyme activity as in negative control levels. The oxidative stress parameter analyses revealed that terpenoid application could enhance antioxidant levels and decrease oxidative stress in the cultures. In conclusion, we reported that these two terpenoid molecules could be used in the development of efficient treatment strategies for PD patients.
  •  
5.
  • Arslan, Mehmet Enes, et al. (författare)
  • In Vitro Transcriptome Analysis of Cobalt Boride Nanoparticles on Human Pulmonary Alveolar Cells
  • 2022
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 15:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanobiotechnology influences many different areas, including the medical, food, energy, clothing, and cosmetics industries. Considering the wide usage of nanomaterials, it is necessary to investigate the toxicity potentials of specific nanosized molecules. Boron-containing nanoparticles (NPs) are attracting much interest from scientists due to their unique physicochemical properties. However, there is limited information concerning the toxicity of boron-containing NPs, including cobalt boride (Co2B) NPs. Therefore, in this study, Co2B NPs were characterized using X-ray crystallography (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) techniques. Then, we performed 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, and neutral red (NR) assays for assessing cell viability against Co2B NP exposure on cultured human pulmonary alveolar epithelial cells (HPAEpiC). In addition, whole-genome microarray analysis was carried out to reveal the global gene expression differentiation of HPAEpiC cells after Co2B NP application. The cell viability tests unveiled an IC50 value for Co2B NPs of 310.353 mg/L. The results of our microarray analysis displayed 719 gene expression differentiations (FC >= 2) among the analyzed 40,000 genes. The performed visualization and integrated discovery (DAVID) analysis revealed that there were interactions between various gene pathways and administration of the NPs. Based on gene ontology biological processes analysis, we found that the P53 signaling pathway, cell cycle, and cancer-affecting genes were mostly affected by the Co2B NPs. In conclusion, we suggested that Co2B NPs would be a safe and effective nanomolecule for industrial applications, particularly for medical purposes.
  •  
6.
  • Basak, Togar, et al. (författare)
  • Synthesis and in Vitro Toxicity Assessment of Different Nano-Calcium Phosphate Nanoparticles
  • 2022
  • Ingår i: Brazilian archives of biology and technology. - : FapUNIFESP (SciELO). - 1516-8913 .- 1678-4324. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoscale biomaterials are commonly used in a wide range of biomedical applications such as bone graft substitutes, gene delivery systems, and biologically active agents. On the other hand, the cytotoxic potential of these particles hasn't yet been studied comprehensively to understand whether or not they exert any negative impact on the cellular structures. Here, we undertook the synthesis of beta-tricalcium phosphate (beta-TCP) and biphasic tricalcium phosphate (BCP) nanoparticles (NPs) and determine their concentration-dependent toxic effects in human fetal osteoblastic (hFOB 1.19) cell line. Firstly, BCP and beta-TCP were synthesized using a water-based precipitation technique and characterized by X-Ray Diffraction (XRD), Raman Spectroscopy, and Transmission Electron Microscopy (TEM). The cytological effects of beta-TCP and BCP at different concentrations (0-640 ppm) were evaluated by using 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The total oxidative status (TOS) parameter was used for investigating oxidative stress potentials of the NPs. In addition, the study assessed the DNA damage product 8-hydroxy-2'-deoxyguanosine (8-Oxo-dG) level in hFOB 1.19 cell cultures. The results indicated that the beta-TCP (above 320 ppm) and BCP (above 80 ppm) NPs exhibited cytotoxicity effects on high concentrations. It was also observed that the oxidative stress increased relatively as the concentrations of NPs increased, aligning with the cytotoxicity results. However, the NPs concentrations of 160 ppm and above increased the level of 8-OH-dG. Consequently, there is a need for more systematic in vivo and in vitro approaches to the toxic effects of both nanoparticles.
  •  
7.
  • Cinici, Emine, et al. (författare)
  • Targeted Gene Candidates for Treatment and Early Diagnosis of Age-Related Macular Degeneration
  • 2021
  • Ingår i: BioMed Research International. - : Hindawi Limited. - 2314-6133 .- 2314-6141. ; 2021
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related macular degeneration (AMD) is an eye disease that impairs the sharp and central vision need for daily activities. Recent advances in molecular biology research not only lead to a better understanding of the genetics and pathophysiology of AMD but also to the development of applications based on targeted gene expressions to treat the disease. Clarification of molecular pathways that causing to development and progression in dry and wet types of AMD needs comprehensive and comparative investigations in particular precious biopsies involving peripheral blood samples from the patients. Therefore, in this investigation, dry and wet types of AMD patients and healthy individuals were aimed at investigating in regard to targeted gene candidates by using gene expression analysis for the first time. 13 most potent candidate genes involved in neurodegeneration were selected via in silico approach and investigated through gene expression analysis to suggest new targets for disease therapy. For the analyses, 30 individuals (10 dry and 10 wet types AMD patients and 10 healthy people) were involved in the study. SYBR-Green based Real-Time PCR analysis was performed on isolated peripheral blood mononuclear cells (PBMCs) to analyze differentially expressed genes related to these cases. According to the investigations, only the CRP gene was found to be upregulated for both dry and wet disease types. When the downregulated genes were analyzed, it was found that 11 genes were commonly decreased for both dry and wet types in the aspect of expression pattern. From these genes, CFH, CX3CR1, FLT1, and TIMP3 were found to have the most downregulated gene expression properties for both diseases. From these results, it might be concluded that these common upregulated and downregulated genes could be used as targets for early diagnosis and treatment for AMD.
  •  
8.
  • Gouleni, Niki, et al. (författare)
  • Anticancer Potential of Novel Cinnamoyl Derivatives against U87MG and SHSY-5Y Cell Lines
  • 2024
  • Ingår i: Anti-Cancer Agents in Medicinal Chemistry. - : Bentham Science Publishers Ltd.. - 1871-5206 .- 1875-5992. ; 24:1, s. 39-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Glioblastoma multiforme (GBM) is probably the most malignant and aggressive brain tumor belonging to the class of astrocytomas. The considerable aggressiveness and high malignancy of GBM make it a tumor that is difficult to treat. Here, we report the synthesis and biological evaluation of eighteen novel cinnamoyl derivatives (3a-i and 4a-i) to obtain more effective antitumor agents against GBM. Methods: The chemical structures of novel cinnamoyl derivatives (3a-i and 4a-i) were confirmed by NMR and MS analyses. The physicochemical properties and evaluation of the ADME profile of 3a-i and 4a-i were performed by the preADMETlab2.0 web program. Cinnamoyl derivatives 3a-i and 4a-i were tested in vitro for their cytotoxicity against the human healthy fibroblast (HDFa) cells using an MTT cell viability assay. Derivatives with no toxicity on HDFa cells were tested both on human glioblastoma (U87MG) and neuroblastoma (SHSY5Y) cells, chosen as an experimental model of brain tumors. Cell death mechanisms were analyzed by performing flow cytometry analyses. Results: Cinnamoyl derivatives 3a-i and 4a-i showed good physicochemical and ADME properties suggesting that these compounds could be developed as oral drugs endowed with a high capability to cross the blood-brain barrier. Compounds (E)-1-methoxy-4-(2-(phenylsulfonyl)vinyl)benzene (2c) and (E)-N-benzyl-N-(2-(cyclohexylamino)-2-oxoethyl)-3-(3,4,5-trimethoxyphenyl)acrylamide (3e) did not show cytotoxicity on healthy human fibroblast cells up to 100 µg/mL. The most anticarcinogenic molecule, compound 3e, emerged as the most potent anticancer candidate in this study. Flow cytometry results showed that compound 3e (25 µg/mL) application resulted in nearly 86% and 84% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Compound 2c (25 µg/mL) resulted in 81% and 82% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Conclusion: Cinnamoyl derivative 3e inhibits the proliferation of cultured U87MG and SHSY-5Y cells by inducing apoptosis. Further detailed research will be conducted to confirm these data in in vivo experimental animal models.
  •  
9.
  • Gouleni, Niki, et al. (författare)
  • Novel styryl-thiazole hybrids as potential anti-Alzheimer's agents
  • 2023
  • Ingår i: RSC Medicinal Chemistry. - : Royal Society of Chemistry (RSC). - 2632-8682. ; 14:11, s. 2315-2326
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, combining the thiazole and cinnamoyl groups into the styryl-thiazole scaffold, a series of novel styryl-thiazole hybrids (6a-p) was rationally designed, synthesized, and evaluated by the multi-target-directed ligands strategy as potential candidates for the treatment of Alzheimer's disease (AD). Hybrids 6e and 6i are the most promising among the synthesized hybrids since they are able to significantly increase cell viabilities in A beta 1-42-exposed-human neuroblastoma cell line (6i at the concentration of 50 mu g mL-1 and 6e at the concentration of 25 mu g mL-1 resulted in similar to 34% and similar to 30% increase in cell viabilities, respectively). Compounds 6e and 6i exhibit highly AChE inhibitory properties in the experimental AD model at 375.6 +/- 18.425 mU mL-1 and 397.6 +/- 32.152 mU mL-1, respectively. Moreover, these data were also confirmed by docking studies and in vitro enzyme inhibition assays. Compared to hybrid 6e and according to the results, 6i also has the highest potential against A beta 1-42 aggregation with over 80% preventive activity. The in silico prediction of the physicochemical properties confirms that 6i possesses a better profile compared to 6e. Therefore, compound 6i presents a promising multi-targeted active molecular profile for treating AD considering the multifactorial nature of AD, and it is reasonable to deepen its mechanisms of action in an in vivo experimental model of AD. Novel styryl-thiazole hybrids (6a-p) was rationally designed, synthesized, and evaluated by the multi-target-directed ligands strategy as potential candidates for the treatment of Alzheimer's disease.
  •  
10.
  • Turkez, Hasan, et al. (författare)
  • Boron Compounds Exhibit Protective Effects against Aluminum-Induced Neurotoxicity and Genotoxicity : In Vitro and In Vivo Study
  • 2022
  • Ingår i: Toxics. - : MDPI. - 2305-6304. ; 10:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic, neuropathological and biochemical investigations have revealed meaningful relationships between aluminum (Al) exposure and neurotoxic and hematotoxic damage. Hence, intensive efforts are being made to minimize the harmful effects of Al. Moreover, boron compounds are used in a broad mix of industries, from cosmetics and pharmaceuticals to agriculture. They affect critical biological functions in cellular events and enzymatic reactions, as well as endocrinal and mineral metabolisms. There are limited dose-related data about boric acid (BA) and other boron compounds, including colemanite (Col), ulexite (UX) and borax (BX), which have commercial prominence. In this study, we evaluate boron compounds' genetic, cytological, biochemical and pathological effects against aluminum chloride (AlCl3)-induced hematotoxicity and neurotoxicity on different cell and animal model systems. First, we perform genotoxicity studies on in vivo rat bone marrow cells and peripheric human blood cultures. To analyze DNA and chromosome damage, we use single cell gel electrophoresis (SCGE or comet assay) and micronucleus (MN) and chromosome aberration (CA) assays. The nuclear division index (NDI) is used to monitor cytostasis. Second, we examine the biochemical parameters (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), total antioxidant capacity (TAC) and total oxidative status (TOS)) to determine oxidative changes in blood and brain. Next, we assess the histopathological alterations by using light and electron microscopes. Our results show that Al increases oxidative stress and genetic damage in blood and brain in vivo and in vitro studies. Al also led to severe histopathological and ultrastructural alterations in the brain. However, the boron compounds alone did not cause adverse changes based on the above-studied parameters. Moreover, these compounds exhibit different levels of beneficial effects by removing the harmful impact of Al. The antioxidant, antigenotoxic and cytoprotective effects of boron compounds against Al-induced damage indicate that boron may have a high potential for use in medical purposes in humans. In conclusion, our analysis suggests that boron compounds (especially BA, BX and UX) can be administered to subjects to prevent neurodegenerative and hematological disorders at determined doses.
  •  
11.
  • Turkez, Hasan, et al. (författare)
  • Drug Synergism of Anticancer Action in Combination with Favipiravir and Paclitaxel on Neuroblastoma Cells
  • 2024
  • Ingår i: Medicina. - : MDPI AG. - 1010-660X .- 1648-9144. ; 60:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives: Favipiravir (FPV) is an antiviral medication and has an inhibitory effect on Cytochrome P450 (CYP2C8) protein, which is mainly involved in drug metabolism in the liver, and the expression of this gene is known to be enhanced in neuronal cells. The metabolization of Paclitaxel (PTX), a chemotherapeutic drug used in cancer patients, was analyzed for the first time in the human SH-SY5Y neuroblastoma cell line for monitoring possible synergistic effects when administered with FPV. Materials and Methods: Further, in vitro cytotoxic and genotoxic evaluations of FPV and PTX were also performed using wide concentration ranges in a human fibroblast cell culture (HDFa). Nuclear abnormalities were examined under a fluorescent microscope using the Hoechst 33258 fluorescent staining technique. In addition, the synergistic effects of these two drugs on cultured SH-SY5Y cells were determined by MTT cell viability assay. In addition, the death mechanisms that can occur in SHSY-5Y were revealed by using the flow cytometry technique. Results: Cell viability analyses on the HDFa healthy cell culture showed that both FPV and PTX have inhibitory effects at higher concentrations. On the other hand, there were no significant differences in nuclear abnormality numbers when both of the compounds were applied together. Cell viability analyses showed that FPV and PTX applications have higher cytotoxicity, which indicated synergistic toxicity against the SHSY-5Y cell line. Also, PTX exhibited higher anticancer properties against the neuroblastoma cell line when applied with FPV, as shown in both cytotoxicity and flow cytometry analyses. Conclusions: In light of our findings, the anticancer properties of PTX can be enhanced when the drug application is coupled with FPV exposure. Moreover, these results put forth that the anticancer drug dosage should be evaluated carefully in cancer patients who take COVID-19 treatment with FPV.
  •  
12.
  • Turkez, Hasan, et al. (författare)
  • Histidyl-Proline Diketopiperazine Isomers as Multipotent Anti-Alzheimer Drug Candidates
  • 2020
  • Ingår i: Biomolecules. - : MDPI AG. - 2218-273X. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclic dipeptides administered by both parenteral and oral routes are suggested as promising candidates for the treatment of neurodegeneration-related pathologies. In this study, we tested Cyclo (His-Pro) isomers (cHP1-4) for their anti-Alzheimer potential using a differentiated human neuroblastoma cell line (SH-SY5Y) as an Alzheimer's disease (AD) experimental model. The SH-SY5Y cell line was differentiated by the application of all-trans retinoic acid (RA) to obtain mature neuron-like cells. Amyloid-beta 1-42 (A beta(1-42)) peptides, the main effector in AD, were administered to the differentiated cell cultures to constitute the in vitro disease model. Next, we performed cell viability analyses 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays) to investigate the neuroprotective concentrations of cyclodipeptides using the in vitro AD model. We evaluated acetylcholinesterase (AChE), alpha- and beta-secretase activities (TACE and BACE1), antioxidant potency, and apoptotic/necrotic properties and performed global gene expression analysis to understand the main mechanism behind the neuroprotective features of cHP1-4. Moreover, we conducted sister chromatid exchange (SCE), micronucleus (MN), and 8-hydroxy-2 '-deoxyguanosine (8-OHdG) analyses to evaluate the genotoxic damage potential after applications with cHP1-4 on cultured human lymphocytes. Our results revealed that cHP1-4 isomers provide a different degree of neuroprotection against A beta(1-42)-induced cell death on the in vitro AD model. The applications with cHP1-4 isomers altered the activity of AChE but not the activity of TACE and BACE1. Our analysis indicated that the cHP1-4 increased the total antioxidant capacity without altering total oxidative status levels in the cellular AD model and that cHP1-4 modulated the alterations of gene expressions by A beta(1-42) exposure. We also observed that cHP1-4 exhibited noncytotoxic and non-genotoxic features in cultured human whole blood cells. In conclusion, cHP1-4 isomers, especially cHP4, have been explored as novel promising therapeutics against AD.
  •  
13.
  • Turkez, Hasan, et al. (författare)
  • Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes
  • 2023
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923. ; 15:1, s. 149-
  • Tidskriftsartikel (refereegranskat)abstract
    • Complications of chronic non-healing wounds led to the emergence of nanotechnology-based therapies to enhance healing, facilitate tissue repair, and prevent wound-related complications like infections. Here, we design alpha lipoic acid (ALA) conjugated hexagonal boron nitride (hBN) and boron carbide (B4C) nanoparticles (NPs) to enhance wound healing in human dermal fibroblast (HDFa) cell culture and characterize its antimicrobial properties against Staphylococcus aureus (S. aureus, gram positive) and Escherichia coli (E. coli, gram negative) bacterial strains. ALA molecules are integrated onto hBN and C4B NPs through esterification procedure, and molecular characterizations are performed by using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-vis spectroscopy. Wound healing and antimicrobial properties are investigated via the use of cell viability assays, scratch test, oxidative stress, and antimicrobial activity assays. Based on our analysis, we observe that ALA-conjugated hBN NPs have the highest wound-healing feature and antimicrobial activity compared to ALA-B4C. On the other hand, hBN, ALA-B4C, and ALA compounds showed promising regenerative and antimicrobial properties. Also, we find that ALA conjugation enhances wound healing and antimicrobial potency of hBN and B4C NPs. We conclude that the ALA-hBN conjugate is a potential candidate to stimulate regeneration process for injuries.
  •  
14.
  • Turkez, Hasan, et al. (författare)
  • Molecular Genetics and Cytotoxic Responses to Titanium Diboride and Zinc Borate Nanoparticles on Cultured Human Primary Alveolar Epithelial Cells
  • 2022
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Titanium diboride (TiB2) and zinc borate (Zn3BO6) have been utilized in wide spectrum industrial areas because of their favorable properties such as a high melting point, good wear resistance, high hardness and thermal conductivity. On the other hand, the biomedical potentials of TiB2 and Zn3BO6 are still unknown because there is no comprehensive analysis that uncovers their biocompatibility features. Thus, the toxicogenomic properties of TiB2 and Zn3BO6 nanoparticles (NPs) were investigated on human primary alveolar epithelial cell cultures (HPAEpiC) by using different cell viability assays and microarray analyses. Protein-Protein Interaction Networks Functional Enrichment Analysis (STRING) was used to associate differentially expressed gene probes. According to the results, up to 10 mg/L concentration of TiB2 and Zn3BO6 NPs application did not stimulate a cytotoxic effect on the HPAEpiC cell cultures. Microarray analysis revealed that TiB2 NPs exposure enhances cellular adhesion molecules, proteases and carrier protein expression. Furthermore, Zn3BO6 NPs caused differential gene expressions in the cell cycle, cell division and extracellular matrix regulators. Finally, STRING analyses put forth that inflammation, cell regeneration and tissue repair-related gene interactions were affected by TiB2 NPs application. Zn3BO6 NPs exposure significantly altered inflammation, lipid metabolism and infection response activator-related gene interactions. These investigations illustrated that TiB2 and Zn3BO6 NPs exposure may affect different aspects of cellular machineries such as immunogenic responses, tissue regeneration and cell survival. Thus, these types of cellular mechanisms should be taken into account before the use of the related NPs in further biomedical applications.
  •  
15.
  • Turkez, Hasan, et al. (författare)
  • Nonpharmacological treatment options for Alzheimer's disease : from animal testing to clinical studies
  • 2020
  • Ingår i: Turkish Journal of Zoology. - : The Scientific and Technological Research Council of Turkey (TUBITAK-ULAKBIM). - 1300-0179 .- 1303-6114. ; 44:2, s. 81-89
  • Forskningsöversikt (refereegranskat)abstract
    • Despite extensive pharmacological approaches, there is no curative therapy for Alzheimer's disease (AD) or other types of dementias. While current pharmacological options alleviate some symptoms of AD, they can lead to various adverse effects. Hence, nonpharmacological treatment options for AD are often considered with the assumption that they are safe, effective, and economic in managing patients. Furthermore, studies on animal models have suggested that environmental exposures like diet, music, or reward-related actions can stimulate neuronal regeneration and differentiation without using any pharmacological factors. The aim of this review is to provide a summary of nonpharmacological treatment options for the management of cognitive, emotional, and behavioral symptoms of AD. In addition, this review provides an overview of the challenging and encouraging experiences and recent studies and problems in cognitive training related to animal models. Nonpharmacological studies of AD are discussed in this literature review in terms of animal models, physical activity, brain stimulation, and the role of social communication.
  •  
16.
  • Turkez, Hasan, et al. (författare)
  • Pivotal role of micronucleus test in drug discovery
  • 2019
  • Ingår i: Micronucleus Assay: An Overview. - : Nova Science Publishers, Inc.. ; , s. 49-73, s. 49-73
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Early detection of adverse effects of novel compunds during drug discovery and development most probably reduce late stage failures, expenses and exertions for candidate drugs. Although the micronucleus (MN) test is one of the oldest techniques used in biochemical sciences for drug discovery. Flexibility of the technique for both in vitro and in vivo applications and practicability for large scale samples in short time make the MN test an inevitable tool for chemical trails. Drug studies require a formulation that provides the highest exposure to detect clastogenic and aneugenic activities and thus analysis makes it possible to get the necessary safety margin to support clinical trials. The MN test is one of the most important tools of the genotoxicity test battery in preclinical studies to identify negative effects of compounds that induce numerical and structural chromosome alterations in wide spectrum concentrations. The MN assay can be applied various cell types in different protocols. For instance; the most recommended protocols are bone the marrow micronucleus analysis and the in vivo mammalian erythrocyte precursor assay. Also, the rodent ovary cells validation test is a very powerful approach to analyse side effects of a compound. Beside cell types, detection systems can be constituted to obtain a high throughput screening such as integrating flow cytometry analysis into the MN inspections. Since a new compound is needed for such an assay, the MN test can assess abnormalities earlier in the drug discovery pipeline, making structure/genotoxicity connection a possible system for drug characterization.
  •  
17.
  • Turkez, Hasan, et al. (författare)
  • Promising potential of boron compounds against Glioblastoma : In Vitro antioxidant, anti-inflammatory and anticancer studies
  • 2021
  • Ingår i: Neurochemistry International. - : Elsevier BV. - 0197-0186 .- 1872-9754. ; 149
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma (GB) is the most common and aggressive primary malignant astrocytoma correlated with poor patient survival. There are no curative treatments for GB, and it becomes resistant to chemotherapy, radiation therapy, and immunotherapy. Resistance in GB cells is closely related to their states of redox imbalance, and the role of reactive oxygen species and its impact on cancer cell survival is still far from elucidation. Boron-containing compounds, especially boric acid (BA) and borax (BX) exhibited interesting biological effects involving antibacterial, antiviral, anti-cancerogenic, anti-mutagenic, anti-inflammatory as well as anti-oxidative features. Recent studies indicated that certain boron compounds could be cytotoxic on human GB. Nevertheless, there is gap of knowledge in the literature on exploring the underlying mechanisms of anti-GB action by boron compounds. Here, we identified and compared the potential anti-GB effect of both BA and BX, and revealed their underlying anti-GB mechanism. We performed cell viability, oxidative alterations, oxidative DNA damage po-tential assays, and explored the inflammatory responses and gene expression changes by real-time PCR using U-87MG cells. We found that BA and BX led to a remarkable reduction in U-87MG cell viability in a concentration-dependent manner. We also found that boron compounds increased the total oxidative status and MDA levels along with the SOD and CAT enzyme activities and decreased total antioxidant capacity and GSH levels in U-87MG cells without inducing DNA damage. The cytokine levels of cancer cells were also altered. We verified the selectivity of the compounds using a normal cell line, HaCaT and found an exact opposite condition after treating HaCaT cells with BA and BX. BA applications were more effective than BX on U-87MG cell line in terms of increasing MDA levels, SOD and CAT enzyme activities, and decreasing Interleukin-1 alpha, Interleukin-6 and Tumor necrosis factor-alpha (TNF-alpha) levels. We finally observed that anticancer effect of BA and BX were associated with the BRAF/MAPK, PTEN and PI3K/AKT signaling pathways in respect of downregulatory manner. Especially, BA application was found more favorable because of its inhibitory effect on PIK3CA, PIK3R1, PTEN and RAF1 genes. In conclusion, our analysis indicated that boron compounds may be safe and promising for effective treatment of GB.
  •  
18.
  • Turkez, Hasan, et al. (författare)
  • Safety and Efficacy Assessments to Take Antioxidants in Glioblastoma Therapy : From In Vitro Experiences to Animal and Clinical Studies
  • 2021
  • Ingår i: Neurochemistry International. - : Elsevier BV. - 0197-0186 .- 1872-9754. ; 150
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma (GBM) is considered one of the most common malignant brain tumors, occurring as over 15% of all primary central nervous system and brain neoplasms. The unique and standard treatment option towards GBM involves the combination of surgical resection followed by radiotherapy (RT) and chemotherapy (CT). However, due to the aggressive nature and heterogeneity of GBMs, they remained difficult to treat. Recent findings from preclinical studies have revealed that disruption of the redox balance via using either oxidative or anti-oxidative agents in GBM presented an effective and promising therapeutic approach. A limited number of clinical trials substantially encouraged their concomitant use with RT or CT. Thus, treatment of GBMs may benefit from natural or synthetic antioxidative compounds as novel therapeutics. Despite the presence of variegated in vitro and in vivo studies focusing on safety and efficacy issues of these promising therapeutics, nowadays their translation to clinics is far from applicability due to several challenges. In this review, we briefly introduce the enzymatic and non-enzymatic antioxidant defense systems as well as potential signaling pathways related to the pathogenesis of GBM with a special interest in antioxidant mechanisms. In addition, we describe the advantages and limitations of antioxidant supplementation in GBM cases or disease models as well as growing challenges for GBM therapies with antioxidants in the future.
  •  
19.
  • Turkez, Hasan, et al. (författare)
  • Therapeutic Potential of Ferulic Acid in Alzheimer's Disease
  • 2022
  • Ingår i: Current Drug Delivery. - : Bentham Science Publishers Ltd.. - 1567-2018 .- 1875-5704. ; 19:8, s. 860-873
  • Forskningsöversikt (refereegranskat)abstract
    • Alzheimer's Disease (AD) is one of the most important neurodegenerative diseases, accounting for 60% of all dementia cases. AD is a progressive neurodegenerative disease that occurs due to the production of beta-amyloid (A beta) protein and accumulation of hyper-phosphorylated tau protein; it causes breakage in the synaptic bonds and neuronal deaths to a large extent. Millions of people worldwide suffer from AD because there is no definitive drug for disease prevention, treatment, or slowing down its progression. Over the last decade, multiple target applications have been developed for AD treatments. These targets include A beta accumulations, hyper-phosphorylated tau proteins, mitochondrial dysfunction, and oxidative stress, resulting in toxicity. Various natural or semisynthetic antioxidant formulations have been shown to protect brain cells from A beta-induced toxicity and provide promising potentials for AD treatment. Ferulic acid (FA), a high-capacity antioxidant molecule, is naturally synthesized from certain plants. FA has been shown to have different substantial biological properties, such as anticancer, antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and cardioprotective actions, etc. Furthermore, FA exerts neuroprotection via preventing A beta-fibril formation, acting as an anti-inflammatory agent, and inhibiting free radical generation and acetylcholinesterase (AChE) enzyme activity. In this review, we present key biological roles of FA and several FA derivatives in preventing A beta-induced neurotoxicity, protecting against free radical attacks, and exhibiting enzyme inhibitions and evaluate them as possible therapeutic agents for the treatment of AD.
  •  
20.
  • Turkez, Hasan, et al. (författare)
  • Toxicity of Glycyl-l-Prolyl-l-Glutamate Pseudotripeptides : Cytotoxic, Oxidative, Genotoxic, and Embryotoxic Perspectives
  • 2022
  • Ingår i: Journal of Toxicology. - : Hindawi Limited. - 1687-8191 .- 1687-8205. ; 2022, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The tripeptide H-Gly-Pro-Glu-OH (GPE) and its analogs began to take much interest from scientists for developing effective novel molecules in the treatment of several disorders including Alzheimer's disease, Parkinson's disease, and stroke. The peptidomimetics of GPEs exerted significant biological properties involving anti-inflammatory, antiapoptotic, and anticancer properties. The assessments of their hematological toxicity potentials are critically required for their possible usage in further preclinical and clinical trials against a wide range of pathological conditions. However, there is so limited information on the safety profiling of GPE and its analogs on human blood tissue from cytotoxic, oxidative, and genotoxic perspectives. And, their embryotoxicity potentials were not investigated yet. Therefore, in this study, measurements of mitochondrial viability (using MTT assay) and lactate dehydrogenase (LDH) release as well as total antioxidant capacity (TAC) assays were performed on cultured human whole blood cells after treatment with GPE and its three novel peptidomimetics for 72 h. Sister chromatid exchange (SCE), micronucleus (MN), and 8-oxo-2-deoxyguanosine (8-OH-dG) assays were performed for determining the genotoxic damage potentials. In addition, the nuclear division index (NDI) was figured out for revealing their cytostatic potentials. Embryotoxicity assessments were performed on cultured human pluripotent NT2 embryonal carcinoma cells by MTT and LDH assays. The present results from cytotoxicity, oxidative, genotoxicity, and embryotoxicity testing clearly propounded that GPEs had good biosafety profiles and were trouble-free from the toxicological point of view. Noncytotoxic, antioxidative, nongenotoxic, noncytostatic, and nonembryotoxic features of GPE analogs are worthwhile exploring further and may exert high potentials for improving the development of novel disease-modifying agents.
  •  
21.
  • Yildirim, Ozge Caglar, et al. (författare)
  • Boron Nitride Nanoparticles Loaded with a Boron-Based Hybrid as a Promising Drug Carrier System for Alzheimer's Disease Treatment
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 23:15
  • Tidskriftsartikel (refereegranskat)abstract
    • The search for an innovative and effective drug delivery system that can carry and release targeted drugs with enhanced activity to treat Alzheimer's disease has received much attention in the last decade. In this study, we first designed a boron-based drug delivery system for effective treatment of AD by integrating the folic acid (FA) functional group into hexagonal boron nitride (hBN) nanoparticles (NPs) through an esterification reaction. The hBN-FA drug carrier system was assembled with a new drug candidate and a novel boron-based hybrid containing an antioxidant as BLA, to constitute a self-assembled AD nano transport system. We performed molecular characterization analyses by using UV-vis spectroscopy, Fourier transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS) and Zeta potential investigations. Second, we tested the anti-Alzheimer properties of the carrier system on a differentiated neuroblastoma (SHSY5-Y) cell line, which was exposed to beta-amyloid (1-42) peptides to stimulate an experimental in vitro AD model. Next, we performed cytotoxicity analyses of synthesized molecules on the human dermal fibroblast cell line (HDFa) and the experimental AD model. Cytotoxicity analyses showed that even higher concentrations of the carrier system did not enhance the toxicological outcome in HDFa cells. Drug loading analyses reported that uncoated hBN nano conjugate could not load the BLA, whereas the memantine loading capacity of hBN was 84.3%. On the other hand, memantine and the BLA loading capacity of the hBN-FA construct was found to be 95% and 97.5%, respectively. Finally, we investigated the neuroprotective properties of the nano carrier systems in the experimental AD model. According to the results, 25 mu g/mL concentrations of hBN-FA+memantine (94% cell viability) and hBN-FA+BLA (99% cell viability) showed ameliorative properties against beta-amyloid (1-42) peptide toxicity (50% cell viability). These results were generated through the use of flow cytometry, acetylcholinesterase (AChE) and antioxidant assays. In conclusion, the developed drug carrier system for AD treatment showed promising potential for further investigations and enlightened neuroprotective capabilities of boron molecules to treat AD and other neurodegenerative diseases. On the other hand, enzyme activity, systematic toxicity analyses, and animal studies should be performed to understand neuroprotective properties of the designed carrier system comprehensively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy