SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bastias C. C.) "

Sökning: WFRF:(Bastias C. C.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van der Plas, F., et al. (författare)
  • Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality
  • 2018
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 21:1, s. 31-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade-offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for win-win' forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8-49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.
  •  
2.
  • Ratcliffe, S., et al. (författare)
  • Biodiversity and ecosystem functioning relations in European forests depend on environmental context
  • 2017
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 20:11, s. 1414-1426
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.
  •  
3.
  • Benavides, Raquel, et al. (författare)
  • The GenTree Leaf Collection : Inter- and intraspecific leaf variation in seven forest tree species in Europe
  • 2021
  • Ingår i: Global Ecology and Biogeography. - : John Wiley & Sons. - 1466-822X .- 1466-8238. ; 30:3, s. 590-597
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation Trait variation within species can reveal plastic and/or genetic responses to environmental gradients, and may indicate where local adaptation has occurred. Here, we present a dataset of rangewide variation in leaf traits from seven of the most ecologically and economically important tree species in Europe. Sample collection and trait assessment are embedded in the GenTree project (EU-Horizon 2020), which aims at characterizing the genetic and phenotypic variability of forest tree species to optimize the management and sustainable use of forest genetic resources. Our dataset captures substantial intra- and interspecific leaf phenotypic variability, and provides valuable information for studying the relationship between ecosystem functioning and trait variability of individuals, and the response and resilience of species to environmental changes. Main types of variable contained We chose morphological and chemical characters linked to trade-offs between acquisition and conservation of resources and water use, namely specific leaf area, leaf size, carbon and nitrogen content and their ratio, and the isotopic signature of stable isotope C-13 and N-15 in leaves. Spatial location and grain We surveyed between 18 and 22 populations per species, 141 in total, across Europe. Time period Leaf sampling took place between 2016 and 2017. Major taxa and level of measurement We sampled at least 25 individuals in each population, 3,569 trees in total, and measured traits in 35,755 leaves from seven European tree species, i.e. the conifers Picea abies, Pinus pinaster and Pinus sylvestris, and the broadleaves Betula pendula, Fagus sylvatica, Populus nigra and Quercus petraea. Software format The data files are in ASCII text, tab delimited, not compressed.
  •  
4.
  • Martinez-Sancho, Elisabet, et al. (författare)
  • The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe
  • 2020
  • Ingår i: Scientific Data. - : NATURE PUBLISHING GROUP. - 2052-4463. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations. This dataset covers most of the geographical and climatic range occupied by the selected species. The potential use of it will be highly valuable for assessing ecological and evolutionary responses to environmental conditions as well as for model development and parameterization, to predict adaptability under climate change scenarios.
  •  
5.
  • Opgenoorth, Lars, et al. (författare)
  • The GenTree Platform : growth traits and tree-level environmental data in 12 European forest tree species
  • 2021
  • Ingår i: GigaScience. - : Oxford University Press. - 2047-217X. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Progress in the field of evolutionary forest ecology has been hampered by the huge challenge of phenotyping trees across their ranges in their natural environments, and the limitation in high-resolution environmental information.Findings: The GenTree Platform contains phenotypic and environmental data from 4,959 trees from 12 ecologically and economically important European forest tree species: Abies alba Mill. (silver fir), Betula pendula Roth. (silver birch), Fagus sylvatica L. (European beech), Picea abies (L.) H. Karst (Norway spruce), Pinus cembra L. (Swiss stone pine), Pinus halepensis Mill. (Aleppo pine), Pinus nigra Arnold (European black pine), Pinus pinaster Aiton (maritime pine), Pinus sylvestris L. (Scots pine), Populus nigra L. (European black poplar), Taxus baccata L. (English yew), and Quercus petraea (Matt.) Liebl. (sessile oak). Phenotypic (height, diameter at breast height, crown size, bark thickness, biomass, straightness, forking, branch angle, fructification), regeneration, environmental in situ measurements (soil depth, vegetation cover, competition indices), and environmental modeling data extracted by using bilinear interpolation accounting for surrounding conditions of each tree (precipitation, temperature, insolation, drought indices) were obtained from trees in 194 sites covering the species' geographic ranges and reflecting local environmental gradients.Conclusion: The GenTree Platform is a new resource for investigating ecological and evolutionary processes in forest trees. The coherent phenotyping and environmental characterization across 12 species in their European ranges allow for a wide range of analyses from forest ecologists, conservationists, and macro-ecologists. Also, the data here presented can be linked to the GenTree Dendroecological collection, the GenTree Leaf Trait collection, and the GenTree Genomic collection presented elsewhere, which together build the largest evolutionary forest ecology data collection available.
  •  
6.
  • Baeten, Lander, et al. (författare)
  • Identifying the tree species compositions that maximize ecosystem functioning in European forests
  • 2019
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 56:3, s. 733-744
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Forest ecosystem functioning generally benefits from higher tree species richness, but variation within richness levels is typically large. This is mostly due to the contrasting performances of communities with different compositions. Evidence-based understanding of composition effects on forest productivity, as well as on multiple other functions will enable forest managers to focus on the selection of species that maximize functioning, rather than on diversity per se.2. We used a dataset of 30 ecosystem functions measured in stands with different species richness and composition in six European forest types. First, we quantified whether the compositions that maximize annual above-ground wood production (productivity) generally also fulfil the multiple other ecosystem functions (multifunctionality). Then, we quantified the species identity effects and strength of interspecific interactions to identify the "best" and "worst" species composition for multifunctionality. Finally, we evaluated the real-world frequency of occurrence of best and worst mixtures, using harmonized data from multiple national forest inventories.3. The most productive tree species combinations also tended to express relatively high multifunctionality, although we found a relatively wide range of compositions with high- or low-average multifunctionality for the same level of productivity. Monocultures were distributed among the highest as well as the lowest performing compositions. The variation in functioning between compositions was generally driven by differences in the performance of the component species and, to a lesser extent, by particular interspecific interactions. Finally, we found that the most frequent species compositions in inventory data were monospecific stands and that the most common compositions showed below-average multifunctionality and productivity.4. Synthesis and applications. Species identity and composition effects are essential to the development of high-performing production systems, for instance in forestry and agriculture. They therefore deserve great attention in the analysis and design of functional biodiversity studies if the aim is to inform ecosystem management. A management focus on tree productivity does not necessarily trade-off against other ecosystem functions; high productivity and multifunctionality can be combined with an informed selection of tree species and species combinations.
  •  
7.
  • Robbins, Caleb J., et al. (författare)
  • Nutrient and stoichiometric time series measurements of decomposing coarse detritus in freshwaters
  • 2023
  • Ingår i: Ecology. - : John Wiley & Sons. - 0012-9658 .- 1939-9170. ; 104:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Decomposition of coarse detritus (e.g., dead organic matter larger than ~1 mm such as leaf litter or animal carcasses) in freshwater ecosystems is well described in terms of mass loss, particularly as rates that compress mass loss into one number (e.g., a first-order decay coefficient, or breakdown rate, “k”); less described are temporal changes in the elemental composition of these materials during decomposition, with important implications for elemental cycling from microbes to ecosystems. This stands in contrast with work in the terrestrial realm, where a focus on detrital elemental cycling has provided a sharper mechanistic understanding of decomposition, especially with specific processes such as immobilization and mineralization. Notably, freshwater ecologists often measure carbon (C), nitrogen (N), and phosphorus (P), and their stoichiometric ratios in decomposing coarse materials, including carcasses, wood, leaf litter, and more, but these measurements remain piecemeal. These detrital nutrients are measurements of the entire detrital–microbial complex and are integrative of numerous processes, especially nutrient immobilization and mineralization, and associated microbial growth and death. Thus, data relevant to an elemental, mechanistically focused decomposition ecology are available in freshwaters, but have not been fully applied to that purpose. We synthesized published detrital nutrient and stoichiometry measurements at a global scale, yielding 4038 observations comprising 810 decomposition time series (i.e., measurements within a defined cohort of decomposing material through time) to build a basis for understanding the temporality of elemental content in freshwater detritus. Specifically, the dataset focuses on temporally and ontogenetically (mass loss) explicit measurements of N, P, and stoichiometry (C:N, C:P, N:P). We also collected ancillary data, including detrital characteristics (e.g., species, lignin content), water physiochemistry, geographic location, incubation system type, and methodological variables (e.g., bag mesh size). These measurements are important to unlocking mechanistic insights into detrital ontogeny (the temporal trajectory of decomposing materials) that can provide a deeper understanding of heterotroph-driven C and nutrient cycling in freshwaters. Moreover, these data can help to bridge aquatic and terrestrial decomposition ecology, across plant or animal origin. By focusing on temporal trajectories of elements, this dataset facilitates cross-ecosystem comparisons of fundamental decomposition controls on elemental fluxes. It provides a strong starting point (e.g., via modeling efforts) for comparing processes such as immobilization and mineralization that are understudied in freshwaters. Time series from decomposing leaf litter, particularly in streams, are common in the dataset, but we also synthesized ontogenies of animal-based detritus, which tend to decompose rapidly compared with plant-based detritus that contains high concentrations of structural compounds such as lignin and cellulose. Although animal-based data were rare, comprising only three time series, their inclusion in this dataset underscores the opportunities to develop an understanding of decomposition that encompasses all detrital types, from carrion to leaf litter. There are no copyright or proprietary restrictions on the dataset; please cite this data paper when reusing these materials.
  •  
8.
  • Robbins, Caleb J., et al. (författare)
  • Nutrient and stoichiometry dynamics of decomposing litter in stream ecosystems : a global synthesis
  • 2023
  • Ingår i: Ecology. - : John Wiley & Sons. - 0012-9658 .- 1939-9170. ; 104:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Decomposing organic matter forms a substantial resource base, fueling the biogeochemical function and secondary production of most aquatic ecosystems. However, detrital N (nitrogen) and P (phosphorus) dynamics remain relatively unexplored in aquatic ecosystems relative to terrestrial ecosystems, despite fundamentally linking microbial processes to ecosystem function across broad spatial scales. We synthesized 217 published time series of detrital carbon (C), N, P, and their stoichiometric ratios (C:N, C:P, N:P) from stream ecosystems to analyze the temporal nutrient dynamics of decomposing litter using generalized additive models. Model results indicated that detritus was a net source of N (irrespective of inorganic or organic form) to the environment, regardless of initial N content. In contrast, P sink/source dynamics were more strongly influenced by the initial P content, in which P-poor litters were sinks for nutrients until these shifted to net P mineralization after ~40% mass loss. However, large variations surrounded both the N and P predictions, suggesting the importance of nonmicrobial factors such as fragmentation by invertebrates. Detrital C:N ratios converged and became more similar toward the end of the decomposition, suggesting predictable microbial functional effects throughout detrital ontogeny. C:P and N:P ratios also converged to some degree, but these model predictions were less robust than for C:N, due in part to the lower number of published detrital C:P time series. The explorations of environmental covariate effects were frequently limited by a few coincident covariate measurements across studies, but temperature, N availability, and P tended to accelerate the existing ontogenetic patterns in C:N. Our analysis helps to unite organic matter decomposition across aquatic–terrestrial boundaries by describing the basic patterns of elemental flows catalyzed by decomposition in streams, and points to a research agenda with which to continue addressing gaps in our knowledge of detrital nutrient dynamics across ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy