SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Becher Marina) "

Sökning: WFRF:(Becher Marina)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahearn, Thomas U., et al. (författare)
  • Common variants in breast cancer risk loci predispose to distinct tumor subtypes
  • 2022
  • Ingår i: Breast Cancer Research. - : Springer Nature. - 1465-5411 .- 1465-542X. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundGenome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear.MethodsAmong 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes.ResultsEighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions.ConclusionThis report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.
  •  
2.
  • Becher, Marina, et al. (författare)
  • Buried soil organic inclusions in non-sorted circles fields in northern Sweden : Age and Paleoclimatic context
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-8953. ; 118:1, s. 104-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Although burial of surface organic soil horizons into deeper mineral soil layers helps drive the long-term buildup of carbon in arctic soils, when and why buried horizons formed as result of cryoturbation in northern Sweden remain unclear. In this study, we used C-14 and Pb-210 dating to assess when organic matter was buried within non-sorted circles fields near Abisko in northern Sweden. In addition, we used aerial photos from 1959 and 2008 to detect eventual trends in cryogenic activities during this period. We found that organic matter from former organic horizons (stratigraphically intact or partly fragmented) corresponds to three major periods: 0-100 A. D., 900-1250 A. D., and 1650-1950 A. D. The latter two periods were indicated by several dated samples, while the extent of the oldest period is more uncertainty (indicated by only one sample). The aerial photos suggest a net overgrowth by shrub vegetation of previously exposed mineral soil surfaces since 1959. This overgrowth trend was seen in most of the studied fields (92 out of 137 analyzed fields), indicating that the cryogenic activity has mainly decreased in studied non-sorted circles fields since the 1950s. This latter interpretation is also supported by the absence of buried organic layers formed during the last decades. We suggest that the organic matter was buried during the transition from longer cold periods to warmer conditions. We believe these climatic shifts could have triggered regional scale burial of soil organic matter and thus affected how these soils sequestered carbon.
  •  
3.
  • Becher, Marina, 1983-, et al. (författare)
  • Cryogenic disturbance and its impact on carbon fluxes in a subarctic heathland
  • 2015
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Differential frost heave, along with the associated cryogenic disturbance that accompanies it, is an almost universal feature of arctic landscapes that potentially influences the fate of the soil carbon (C) stored in arctic soils. In this study, we quantify how gross ecosystem photosynthesis (GEP), soil respiration (Re) and the resulting net ecosystem exchange (NEE) vary in a patterned ground system (non-sorted circles) at plot-scale and whole-patterned ground scales in response to cryogenic disturbances (differential heave and soil surface disruption). We found that: (i) all studied non-sorted circles (n=15) acted as net CO2 sources (positive NEE); (ii) GEP showed a weaker decrease than Re in response to increased cryogenic disturbance/decreased humus cover, indicating that undisturbed humus-covered sites are currently the main source of atmospheric CO2 in the studied system. Interestingly, Re fluxes normalized to C pools indicated that C is currently respired more rapidly at sites exposed to cryogenic disturbances; hence, higher NEE fluxes at less disturbed sites are likely an effect of a more slowly degrading but larger total pool that was built up in the past. Our results highlight the complex effects of cryogenic processes on the C cycle at various time scales. 
  •  
4.
  • Becher, Marina, 1983- (författare)
  • Cryogenic soil processes in a changing climate
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A considerable part of the global pool of terrestrial carbon is stored in high latitude soils. In these soils, repeated cycles of freezing and thawing creates soil motion (cryoturbation) that in combination with other cryogenic disturbance processes may play a profound role in controlling the carbon balance of the arctic soil. Conditions for cryogenic soil processes are predicted to dramatically change in response to the ongoing climate warming, but little is known how these changes may affect the ability of arctic soils to accumulate carbon. In this thesis, I utilize a patterned ground system, referred to as non-sorted circles, as experimental units and quantify how cryogenic soil processes affect plant communities and carbon fluxes in arctic soils. I show that the cryoturbation has been an important mechanism for transporting carbon downwards in the studied soil over the last millennia. Interestingly, burial of organic material by cryoturbation appears to have mainly occurred during bioclimatic events occurring around A.D. 900-1250 and A.D. 1650-1950 as indicated by inferred 14C ages. Using a novel photogrammetric approach, I estimate that about 0.2-0.8 % of the carbon pool is annually subjected to a net downward transport induced by the physical motion of soil. Even though this flux seems small, it suggests that cryoturbation is an important transporter of carbon over centennial and millennial timescales and contributes to translocate organic matter to deeper soil layers where respiration proceeds at slow rates. Cryogenic processes not only affect the trajectories of the soil carbon, but also generate plant community changes in both species composition and abundance, as indicated by a conducted plant survey on non-sorted circles subjected to variable differential frost heave during the winter. Here, disturbance-tolerant plant species, such as Carex capillaris and Tofieldia pusilla, seem to be favoured by disturbance generated by the differential heave. Comparison with findings from a previous plant survey on the site conducted in the 1980s suggest that the warmer temperatures during the last decades have resulted in decreased differential heave in the studied non-sorted circles. I argue that this change in cryogenic activity has increased abundance of plants present in the 1980s. The fact that the activity and function of the non-sorted circles in Abisko are undergoing changes is further supported by their contemporary carbon dioxide (CO2) fluxes. Here, my measurements of CO2 fluxes suggest that all studied non-sorted circles act as net CO2 sources and thus that the carbon balance of the soils are in a transition state. My results highlight the complex but important relationship between cryogenic soil processes and the carbon balance of arctic soils.
  •  
5.
  • Becher, Marina, 1983-, et al. (författare)
  • Decreased cryogenic disturbance : one of the potential mechanisms behind the vegetation change in the Arctic
  • 2018
  • Ingår i: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 41:1, s. 101-110
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • During the last few decades, the Arctic has experienced large-scale vegetation changes. Understanding the mechanisms behind this vegetation change is crucial for our ability to predict future changes. This study tested the hypothesis that decreased cryogenic disturbances cause vegetation change in patterned ground study fields (non-sorted circles) in Abisko, Sweden during the last few decades. The hypothesis was tested by surveying the composition of plant communities across a gradient in cryogenic disturbance and by reinvestigating plant communities previously surveyed in the 1980s to scrutinise how these communities changed in response to reduced cryogenic disturbance. Whereas the historical changes in species occurrence associated with decreased cryogenic disturbances were relatively consistent with the changes along the contemporary gradient of cryogenic disturbances, the species abundance revealed important transient changes highly dependent on the initial plant community composition. Our results suggest that altered cryogenic disturbances cause temporal changes in vegetation dynamics, but the net effects on vegetation communities depend on the composition of initial plant species.
  •  
6.
  • Becher, Marina, et al. (författare)
  • Measuring soil motion with terrestrial close range photogrammetry in periglacial environments
  • 2014
  • Ingår i: EUCOP 4. - : University of Lisbon and the University of Évora. ; , s. 351-351
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Cryoturbation plays an important role in the carbon cycle as it redistributes carbon deeper down in the soil where the cold temperature prevents microbial decomposition. This contribution is also included in recent models describing the long-term build up of carbon stocks in artic soils. Soil motion rate in cryoturbated soils is sparsely studied. This is because the internal factors maintaining cryoturbation will be affected by any excavation, making it impossible to remove soil samples or install pegs without changing the structure of the soil. So far, mainly the motion of soil surface markers on patterned ground has been used to infer lateral soil motion rates. However, such methods constrain the investigated area to a predetermined distribution of surface markers that may result in a loss of information regarding soil motion in other parts of the patterned ground surface.We present a novel method based on terrestrial close range (<5m) photogrammetry to calculate lateral and vertical soil motion across entire small-scale periglacial features, such as non-sorted circles (frost boils). Images were acquired by a 5-camera calibrated rig from at least 8 directions around a non-sorted circle. During acquisition, the rig was carried by one person in a backpack-like portable camera support system. Natural feature points were detected by SIFT and matched between images using the known epipolar geometry of the calibrated rig. The 3D coordinates of points matched between at least 3 images were calculated to create a point cloud of the surface of interest. The procedure was repeated during two consecutive years to be able to measure any net displacement of soil and calculate rates of soil motion. The technique was also applied to a peat palsa where multiple exposures where acquired of selected areas.The method has the potential to quantify areas of disturbance and estimate lateral and vertical soil motion in non-sorted circles. Furthermore, it should be possible to quantify peat erosion and rates of desiccation crack formations in peat palsas. This tool could provide new information about cryoturbation rates that could improve existing soil carbon models and increase our understanding about how soil carbon stocks will respond to climate change.
  •  
7.
  • Becher, Marina, 1983-, et al. (författare)
  • The use of terrestrial photogrammetry to estimate soil motion rates in non-sorted circles
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Soil motion induced by cryogenic processes is known for creating soil surface structures (patterned ground) and redistributing carbon within Arctic soils. Lateral and vertical soil motion created by cryogenic processes proceeds over annual to millennial time-scales and is difficult to quantify without adopting disruptive soil sampling techniques. In this study, we evaluate the use of terrestrial close range photogrammetry to calculate soil motion rates within a patterned ground system (non-sorted circles). The measured rates of lateral and vertical motion were estimated and used to infer the importance of physical soil transport for the formation of non-sorted circles as well as the trajectories of soil carbon. Soil experiencing significant vertical displacement between years covered approximately 65% of the non-sorted circles and had surface levels fluctuating between 4 and -2.1 cm. Systematic lateral motion of surface stones allowed detection of lateral motion working outwards from the centre towards the sides, at rates ranging between 0.1 and 6.3 cm yr-1. We conclude that terrestrial close range photogrammetry can be used to identify the main soil movements within non-sorted circles and that this transport is an important factor controlling the trajectories of soil carbon over centennial to millennial timescales. 
  •  
8.
  • Dixon-Suen, Suzanne C, et al. (författare)
  • Physical activity, sedentary time and breast cancer risk : a Mendelian randomisation study
  • 2022
  • Ingår i: British Journal of Sports Medicine. - : BMJ Publishing Group Ltd. - 0306-3674 .- 1473-0480. ; 56:20, s. 1157-1170
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Physical inactivity and sedentary behaviour are associated with higher breast cancer risk in observational studies, but ascribing causality is difficult. Mendelian randomisation (MR) assesses causality by simulating randomised trial groups using genotype. We assessed whether lifelong physical activity or sedentary time, assessed using genotype, may be causally associated with breast cancer risk overall, pre/post-menopause, and by case-groups defined by tumour characteristics.METHODS: We performed two-sample inverse-variance-weighted MR using individual-level Breast Cancer Association Consortium case-control data from 130 957 European-ancestry women (69 838 invasive cases), and published UK Biobank data (n=91 105-377 234). Genetic instruments were single nucleotide polymorphisms (SNPs) associated in UK Biobank with wrist-worn accelerometer-measured overall physical activity (nsnps=5) or sedentary time (nsnps=6), or accelerometer-measured (nsnps=1) or self-reported (nsnps=5) vigorous physical activity.RESULTS: Greater genetically-predicted overall activity was associated with lower breast cancer overall risk (OR=0.59; 95% confidence interval (CI) 0.42 to 0.83 per-standard deviation (SD;~8 milligravities acceleration)) and for most case-groups. Genetically-predicted vigorous activity was associated with lower risk of pre/perimenopausal breast cancer (OR=0.62; 95% CI 0.45 to 0.87,≥3 vs. 0 self-reported days/week), with consistent estimates for most case-groups. Greater genetically-predicted sedentary time was associated with higher hormone-receptor-negative tumour risk (OR=1.77; 95% CI 1.07 to 2.92 per-SD (~7% time spent sedentary)), with elevated estimates for most case-groups. Results were robust to sensitivity analyses examining pleiotropy (including weighted-median-MR, MR-Egger).CONCLUSION: Our study provides strong evidence that greater overall physical activity, greater vigorous activity, and lower sedentary time are likely to reduce breast cancer risk. More widespread adoption of active lifestyles may reduce the burden from the most common cancer in women.
  •  
9.
  • Klaus, Marcus, et al. (författare)
  • Cryogenic Soil Activity along Bioclimatic Gradients in Northern Sweden : Insights from Eight Different Proxies
  • 2013
  • Ingår i: Permafrost and Periglacial Processes. - : John Wiley & Sons. - 1045-6740 .- 1099-1530. ; 24:3, s. 210-223
  • Tidskriftsartikel (refereegranskat)abstract
    • Cryogenic soil activity caused by differential soil movements during freeze-thaw cycles is of fundamental importance for Arctic ecosystem functioning, but its response to climate warming is uncertain. Eight proxies of cryogenic soil activity (including measurements of soil surface motion, vegetation and grey values of aerial photographs) were examined at eight study sites where non-sorted patterned ground spans an elevation gradient (400-1150 m asl) and a precipitation gradient (300-1000 mm yr(-1)) near Abisko, northern Sweden. Six proxies were significantly correlated with each other (mean |r|=0.5). Soil surface motion increased by three to five times along the precipitation gradient and was two to four times greater at intermediate elevations than at low and high elevations, a pattern reflected by vegetation assemblages. The results suggest that inferences about how cryogenic soil activity changes with climate are independent of the choice of the proxy, although some proxies should be applied carefully. Four preferred proxies indicate that cryogenic soil activity may respond differently to climate warming along the elevation gradient and could be greatly modified by precipitation. This underlines the strong but spatially complex response of cryogenic processes to climate change in the Arctic. Copyright (c) 2013 John Wiley & Sons, Ltd.
  •  
10.
  • Krab, Eveline J., et al. (författare)
  • Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions
  • 2018
  • Ingår i: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 106:2, s. 599-612
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change-driven increases in winter temperatures positively affect conditions for shrub growth in arctic tundra by decreasing plant frost damage and stimulation of nutrient availability. However, the extent to which shrubs may benefit from these conditions may be strongly dependent on the following spring climate. Species-specific differences in phenology and spring frost sensitivity likely affect shrub growth responses to warming. Additionally, effects of changes in winter and spring climate may differ over small spatial scales, as shrub growth may be dependent on natural variation in snow cover, shrub density and cryoturbation. We investigated the effects of winter warming and altered spring climate on growing-season performance of three common and widespread shrub species in cryoturbated non-sorted circle arctic tundra. By insulating sparsely vegetated non-sorted circles and parts of the surrounding heath with additional snow or gardening fleeces, we created two climate change scenarios: snow addition increased soil temperatures in autumn and winter and delayed snowmelt timing without increasing spring temperatures, whereas fleeces increased soil temperature similarly in autumn and winter, but created warmer spring conditions without altering snowmelt timing. Winter warming affected shrub performance, but the direction and magnitude were species-specific and dependent on spring conditions. Spring warming advanced, and later snowmelt delayed canopy green-up. The fleece treatment did not affect shoot growth and biomass in any shrub species despite decreasing leaf frost damage in Empetrum nigrum. Snow addition decreased frost damage and stimulated growth of Vaccinium vitis-idaea by c. 50%, while decreasing Betula nana growth (p < .1). All of these effects were consistent the mostly barren circles and surrounding heath. Synthesis. In cryoturbated arctic tundra, growth of Vaccinium vitis-idaea may substantially increase when a thicker snow cover delays snowmelt, whereas in longer term, warmer winters and springs may favour E. nigrum instead. This may affect shrub community composition and cover, with potentially far-reaching effects on arctic ecosystem functioning via its effects on cryoturbation, carbon cycling and trophic cascading. Our results highlight the importance of disentangling effects of winter and spring climate change timing and nature, as spring conditions are a crucial factor in determining the impact of winter warming on plant performance.
  •  
11.
  • Nyman, Alexandra, et al. (författare)
  • A nationwide acid sulfate soil study : A rapid and cost-efficient approach for characterizing large-scale features
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 869
  • Tidskriftsartikel (refereegranskat)abstract
    • Acid sulfate soils are sulfide-rich soils that pose a notable environmental risk as their strong acidity and low pH mobilizes metals from soil minerals leading to both acidification and metal contamination of the surrounding environment. In this study a rapid and cost-efficient approach was developed to resolve the main distribution patterns and geochemical features of acid sulfate soils throughout coastal plains stretching for some 2000 km in eastern, southern, and western Sweden. Of the investigated 126 field sites, 47 % had acid sulfate soils including 33 % active, 12 % potential, and 2 % pseudo acid sulfate soils. There were large regional variations in the extent of acid sulfate soils, with overall much higher proportions of these soils along the eastern coastal plains facing the Baltic Sea than the western coastal plains facing the Kattegatt/Skagerrak (Atlantic Ocean). The sulfur concentrations of the soil's parent material, consisting of reduced near-pH neutral sediments, were correlated inversely both with the minimum pH of the soils in situ (rS = −0.65) and the pH after incubation (oxidation) of the reduced sediments (rS = −0.77). This indicated the importance of sulfide levels in terms of both present and potential future acidification. Hence, the higher proportion of acid sulfate soils in the east was largely the result of higher sulfur concentrations in this part of the country. The study showed that the approach was successful in identifying large-scale spatial patterns and geochemical characteristics of importance for environmental assessments related to these environmentally unfriendly soils.
  •  
12.
  • Pascual, Didac, et al. (författare)
  • The missing pieces for better future predictions in subarctic ecosystems: A Torneträsk case study
  • 2021
  • Ingår i: Ambio. - : Springer. - 0044-7447 .- 1654-7209. ; 50:2, s. 375-392
  • Forskningsöversikt (refereegranskat)abstract
    • Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.
  •  
13.
  • Routh, Joyanto, et al. (författare)
  • Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic
  • 2014
  • Ingår i: Chemical Geology. - : Elsevier BV. - 0009-2541 .- 1872-6836. ; 368, s. 104-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic carbon (SOC) in permafrost terrain is vulnerable to climate change. Perennially frozen peat deposits store large amounts of SOC, but we know little about its chemical composition and lability. We used plant macrofossil and biomarker analyses to reconstruct the Holocene paleovegetation and paleoenvironmental changes in two peat plateau profiles from the European Russian Arctic. Peat plateaus are the main stores of permafrost soil C in the region, but during most of the Holocene peats developed as permafrost-free rich fens with woody vegetation, sedges and mosses. Around 2200 cal BP, permafrost aggraded at the site resulting in frost heave and a drastic reduction in peat accumulation under the drier uplifted surface conditions. The permafrost dynamics (aggradation, frost-heave and thaw) ushered changes in plant assemblages and carbon accumulation, and consequently in the biomarker trends too. Detailed biomarker analyses indicate abundant neutral lipids, which follow the general pattern: n-alkanols > sterols >= n-alkanes >= triterpenols. The lignin monomers are not as abundant as the lipids and increase with depth. The selected aliphatic and phenolic compounds are source specific, and they have different degrees of lability, which is useful for tracing the impact of permafrost dynamics (peat accumulation and/or decay associated with thawing). However, common interpretation of biomarker patterns, and perceived hydrological and climate changes, must be applied carefully in permafrost regions. The increased proportion (selective preservation) of n-alkanes and lignin is a robust indicator of cumulative decomposition trajectories, which is mirrored by functional compounds (e. g. n-alkanol, triterpenol, and sterol concentrations) showing opposite trends. The distribution of these compounds follows first order decay kinetics, and concurs with the down core diagenetic changes. In particular, some of the biomarker ratios (e. g. stanol/sterol and higher plant alkane index) seem promising for tracing SOC decomposition despite changes in botanical imprint, and sites spanning across different soil types and locations. Carbon accumulation rate calculated at these sites varies from 18.1 to 31.1 gC m(-2) yr(-1), and it's evident selective preservation, molecular complexity of organic compounds, and freezing conditions enhance the long-term stability of SOC. Further, our results suggest that permafrost dynamics strongly impact the more undecomposed SOC that could be rapidly remobilized through ongoing thermokarst expansion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13
Typ av publikation
tidskriftsartikel (9)
annan publikation (1)
konferensbidrag (1)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Nevanlinna, Heli (2)
Blomqvist, Carl (2)
Chang-Claude, Jenny (2)
Kaaks, Rudolf (2)
Dorrepaal, Ellen (2)
Wang, Qin (2)
visa fler...
Wolk, Alicja (2)
Haiman, Christopher ... (2)
Chanock, Stephen J (2)
Koutros, Stella (2)
Giles, Graham G (2)
Brenner, Hermann (2)
John, Esther M (2)
Gago Dominguez, Manu ... (2)
Arndt, Volker (2)
Rennert, Gad (2)
Canzian, Federico (2)
Ahearn, Thomas U. (2)
Michailidou, Kyriaki (2)
Milne, Roger L. (2)
Bolla, Manjeet K. (2)
Dennis, Joe (2)
Dunning, Alison M. (2)
Lush, Michael (2)
Andrulis, Irene L. (2)
Anton-Culver, Hoda (2)
Aronson, Kristan J. (2)
Becher, Heiko (2)
Behrens, Sabine (2)
Bermisheva, Marina (2)
Bojesen, Stig E. (2)
Bonanni, Bernardo (2)
Buys, Saundra S. (2)
Castelao, Jose E. (2)
Clarke, Christine L. (2)
Cox, Angela (2)
Cross, Simon S. (2)
Czene, Kamila (2)
Daly, Mary B. (2)
Devilee, Peter (2)
Dwek, Miriam (2)
Eccles, Diana M. (2)
Evans, D. Gareth (2)
Fasching, Peter A. (2)
Garcia-Saenz, Jose A ... (2)
Goldberg, Mark S. (2)
Guenel, Pascal (2)
Hall, Per (2)
Hamann, Ute (2)
Hollestelle, Antoine ... (2)
visa färre...
Lärosäte
Umeå universitet (10)
Uppsala universitet (3)
Lunds universitet (3)
Karolinska Institutet (2)
Sveriges Lantbruksuniversitet (2)
Luleå tekniska universitet (1)
visa fler...
Stockholms universitet (1)
Linköpings universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Medicin och hälsovetenskap (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy