SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beck Sickinger Annette G.) "

Sökning: WFRF:(Beck Sickinger Annette G.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alexander, Stephen P. H., et al. (författare)
  • The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors
  • 2023
  • Ingår i: BRITISH JOURNAL OF PHARMACOLOGY. - : British pharmacological society. - 0007-1188 .- 1476-5381. ; 180
  • Tidskriftsartikel (refereegranskat)abstract
    • The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at . G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
  •  
2.
  • Zoccali, Carmine, et al. (författare)
  • Neuropeptide Y as a risk factor for cardiorenal disease and cognitive dysfunction in chronic kidney disease : translational opportunities and challenges
  • 2022
  • Ingår i: Nephrology, Dialysis and Transplantation. - : Oxford University Press. - 0931-0509 .- 1460-2385. ; 37, s. 14-23
  • Forskningsöversikt (refereegranskat)abstract
    • Neuropeptide Y (NPY) is a 36-amino-acid peptide member of a family also including peptide YY and pancreatic polypeptide, which are all ligands to Gi/Go coupled receptors. NPY regulates several fundamental biologic functions including appetite/satiety, sex and reproduction, learning and memory, cardiovascular and renal function and immune functions. The mesenteric circulation is a major source of NPY in the blood in man and this peptide is considered a key regulator of gut-brain cross talk. A progressive increase in circulating NPY accompanies the progression of chronic kidney disease (CKD) toward kidney failure and NPY robustly predicts cardiovascular events in this population. Furthermore, NPY is suspected as a possible player in accelerated cognitive function decline and dementia in patients with CKD and in dialysis patients. In theory, interfering with the NPY system has relevant potential for the treatment of diverse diseases from cardiovascular and renal diseases to diseases of the central nervous system. Pharmaceutical formulations for effective drug delivery and cost, as well as the complexity of diseases potentially addressable by NPY/NPY antagonists, have been a problem until now. This in part explains the slow progress of knowledge about the NPY system in the clinical arena. There is now renewed research interest in the NPY system in psychopharmacology and in pharmacology in general and new studies and a new breed of clinical trials may eventually bring the expected benefits in human health with drugs interfering with this system.
  •  
3.
  •  
4.
  • Lundström, Linda, 1977- (författare)
  • Subtype selective activation and molecular characterization of galanin receptors
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Showing an extensive distribution in the nervous system, and often in co-localization with the classical neurotransmitters, neuropeptides are functioning as important modulators of neuronal signaling. Subsequently, compelling evidence has implicated a modulatory role for the neuropeptide galanin in several physiological functions. The effect of galanin is trancduced intracellularly by three different receptors, and defining the explicit effect from these receptor subtypes is of outmost interest, and likely to result in future therapeutic utilization of the galanin system. The main aim of this thesis was to improve the development of subtype selective ligands utilized to differentiate between the galanin receptor subtypes. To achieve this, we have designed and developed novel galanin receptor ligands and characterized the molecular interactions necessary for ligand bindig at the GalR2 subtype. The major findings include the introduction and characterization of two galanin receptor ligands, selectively activating GalR1 or inhibiting GalR2. Although having moderate selectivity, the two ligands have been utilized in a number of studies, pursuing their initial presentation, in order to differentiate between the galanin receptors and to establish their specific function. Further optimization is likely to improve the selectivity and utilization of these ligands. By identifying the major pharmacophores in the Gal(2-11) ligand and the residues in the GalR2 subtype participating in ligand binding, we have been able to characterize the binding site in this receptor subtype and interactions that are of significance for recognition of subtype specific ligands. Together, these findings on GalR2 and Gal(2-11) are of importance for future design of ligands acting on this receptor.
  •  
5.
  • Yang, Zhenlin, et al. (författare)
  • Structural basis of ligand binding modes at the neuropeptide Y Y-1 receptor
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 556:7702, s. 520-524
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology(1,2). The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y-1, Y-2, Y-4 and Y-5 receptors, with different affinity and selectivity(3). NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y-1 receptor (Y1R)(4). A number of peptides and small-molecule compounds have been characterized as Y1R antagonists and have shown clinical potential in the treatment of obesity(4), tumour(1) and bone loss(5). However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability(6). Here we report crystal structures of the human Y1R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 angstrom resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y1R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y1R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y1R can enable structure-based drug discovery that targets NPY receptors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (3)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (4)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Beck-Sickinger, Anne ... (4)
Larhammar, Dan, 1956 ... (2)
Bruchfeld, Annette (1)
Schulz, Stefan (1)
Kukkonen, Jyrki P. (1)
Alexander, Stephen P ... (1)
visa fler...
Christopoulos, Arthu ... (1)
Davenport, Anthony P ... (1)
Kelly, Eamonn (1)
Mathie, Alistair A. (1)
Peters, John A. (1)
Veale, Emma L. (1)
Armstrong, Jane F. (1)
Faccenda, Elena (1)
Harding, Simon D. (1)
Davies, Jamie A. (1)
Abbracchio, Maria Pi ... (1)
Abraham, George (1)
Agoulnik, Alexander (1)
Alexander, Wayne (1)
Al-hosaini, Khaled (1)
Baeck, Magnus (1)
Baker, Jillian G. (1)
Barnes, Nicholas M. (1)
Bathgate, Ross (1)
Beaulieu, Jean-Marti ... (1)
Behrens, Maik (1)
Bernstein, Kenneth E ... (1)
Bettler, Bernhard (1)
Birdsall, Nigel J. M ... (1)
Blaho, Victoria (1)
Boulay, Francois (1)
Bousquet, Corinne (1)
Braeuner-Osborne, Ha ... (1)
Burnstock, Geoffrey (1)
Calo, Girolamo (1)
Castano, Justo P. (1)
Catt, Kevin J. (1)
Ceruti, Stefania (1)
Chazot, Paul (1)
Chiang, Nan (1)
Chini, Bice (1)
Chun, Jerold (1)
Cianciulli, Antonia (1)
Civelli, Olivier (1)
Clapp, Lucie H. (1)
Couture, Rejean (1)
Cox, Helen M. (1)
Csaba, Zsolt (1)
Dahlgren, Claes, 194 ... (1)
visa färre...
Lärosäte
Uppsala universitet (2)
Karolinska Institutet (2)
Göteborgs universitet (1)
Stockholms universitet (1)
Linköpings universitet (1)
Lunds universitet (1)
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy