SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beijnen Jos H) "

Sökning: WFRF:(Beijnen Jos H)

  • Resultat 1-25 av 66
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Crombag, Marie-Rose B S, et al. (författare)
  • Impact of Older Age on the Exposure of Paclitaxel : a Population Pharmacokinetic Study.
  • 2019
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 36:2, s. 33-
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Limited available data suggest that older patients are more prone to develop paclitaxel-induced toxicity than their younger peers. It remains unclear whether this is related to age-dependent pharmacokinetics (PK) of paclitaxel. Primary objective of this study was to determine the influence of older age on the PK of paclitaxel.METHODS: PK data of patients aged ≥70 years who received paclitaxel intravenously at the Netherlands Cancer Institute (NKI) and the Radboud University Medical Center between September 2012 and May 2017 were collected. These prospectively collected data were pooled with previously published databases from multiple clinical trials conducted at the NKI and Erasmus MC Cancer Institute. A previously developed 3-compartment population PK model with saturable distribution and elimination was used to describe paclitaxel plasma concentration-time data. Hereafter, influence of age on paclitaxel PK was assessed in a previously established full covariate model.RESULTS: In total, paclitaxel PK data from 684 patients were available, consisting of 166 patients ≥70 years (24%). Median age of the cohort was 61 years (range 18 to 84 years). The impact of age, either treated as a continuous or dichotomous covariate (<70 versus ≥70 years), on the elimination of paclitaxel was only marginal but statistically significant (both p < 0.001 with no clinically relevant decrease in interindividual variability). For a typical patient, maximal elimination capacity decreased by only 5% for a 10-year increment of age.CONCLUSION: In this extensive multi-center dataset, which included a considerable number of older patients, older age had no clinically relevant impact on paclitaxel PK.
  •  
2.
  • Opstal-van Winden, Annemieke W. J., et al. (författare)
  • Searching for early breast cancer biomarkers by serum protein profiling of pre-diagnostic serum; a nested case-control study
  • 2011
  • Ingår i: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Serum protein profiles have been investigated frequently to discover early biomarkers for breast cancer. So far, these studies used biological samples collected at or after diagnosis. This may limit these studies' value in the search for cancer biomarkers because of the often advanced tumor stage, and consequently risk of reverse causality. We present for the first time pre-diagnostic serum protein profiles in relation to breast cancer, using the Prospect-EPIC (European Prospective Investigation into Cancer and nutrition) cohort. Methods: In a nested case-control design we compared 68 women diagnosed with breast cancer within three years after enrollment, with 68 matched controls for differences in serum protein profiles. All samples were analyzed with SELDI-TOF MS (surface enhanced laser desorption/ionization time-of-flight mass spectrometry). In a subset of 20 case-control pairs, the serum proteome was identified and relatively quantified using isobaric Tags for Relative and Absolute Quantification (iTRAQ) and online two-dimensional nano-liquid chromatography coupled with tandem MS (2D-nanoLC-MS/MS). Results: Two SELDI-TOF MS peaks with m/z 3323 and 8939, which probably represent doubly charged apolipoprotein C-I and C3a des-arginine anaphylatoxin (C3a(desArg)), were higher in pre-diagnostic breast cancer serum (p = 0.02 and p = 0.06, respectively). With 2D-nanoLC-MS/MS, afamin, apolipoprotein E and isoform 1 of inter-alpha trypsin inhibitor heavy chain H4 (ITIH4) were found to be higher in pre-diagnostic breast cancer (p < 0.05), while alpha-2-macroglobulin and ceruloplasmin were lower (p < 0.05). C3a(desArg) and ITIH4 have previously been related to the presence of symptomatic and/or mammographically detectable breast cancer. Conclusions: We show that serum protein profiles are already altered up to three years before breast cancer detection.
  •  
3.
  • de Vries Schultink, Aurelia H M, et al. (författare)
  • Population Pharmacokinetics of MCLA-128, a HER2/HER3 Bispecific Monoclonal Antibody, in Patients with Solid Tumors.
  • 2020
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 59:7, s. 875-884
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND OBJECTIVES: MCLA-128 is a bispecific monoclonal antibody targeting the HER2 and HER3 receptors and is in development to overcome HER3-mediated resistance to anti-HER2 therapies. The aims of this analysis were to characterize the population pharmacokinetics of MCLA-128 in patients with various solid tumors, to evaluate patient-related factors that affect the disposition of MCLA-128, and to assess whether flat dosing is appropriate.METHODS: MCLA-128 concentration data following intravenous administration were collected in a phase I/II clinical trial. Pharmacokinetic data were analyzed using non-linear mixed-effects modeling. Different compartmental models were evaluated. Various body size parameters including body weight, body surface area, and fat-free mass were evaluated as covariates in addition to age, sex, HER2 status, and tumor burden.RESULTS: In total, 1115 serum concentration measurements were available from 116 patients. The pharmacokinetics of MCLA-128 was best described by a two-compartment model with linear and non-linear (Michaelis-Menten) clearance. Fat-free mass significantly affected the linear clearance and volume of distribution of the central compartment of MCLA-128, explaining 8.4% and 5.6% of inter-individual variability, respectively. Tumor burden significantly affected the non-linear clearance capacity. Simulations demonstrated that dosing based on body size parameters resulted in similar area under the plasma concentration-time curve for a dosing interval (AUC0-τ), maximum and trough concentrations of MCLA-128, compared to flat dosing.CONCLUSIONS: This analysis demonstrated that the pharmacokinetics of MCLA-128 exhibits similar disposition characteristics to other therapeutic monoclonal antibodies and that a flat dose of MCLA-128 in patients with various solid tumors is appropriate.
  •  
4.
  • Joerger, Markus, et al. (författare)
  • Population pharmacokinetics and pharmacodynamics of doxorubicin and cyclophosphamide in breast cancer patients : a study by the EORTC-PAMM-NDDG
  • 2007
  • Ingår i: Clinical Pharmacokinetics. - 0312-5963 .- 1179-1926. ; 46:12, s. 1051-1068
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: To investigate the population pharmacokinetics and pharmacodynamics of doxorubicin and cyclophosphamide in breast cancer patients. Patients and methods: Sixty-five female patients with early or advanced breast cancer received doxorubicin 60 mg/m(2) over 15 minutes followed by cyclophosphamide 600 mg/m(2) over 15 minutes. The plasma concentration-time data of both drugs were measured, and the relationship between drug pharmacokinetics and neutrophil counts was evaluated using nonlinear mixed-effect modelling. Relationships were explored between drug exposure (the area under the plasma concentration-time curve [AUC]), toxicity and tumour response. Results: Fifty-nine patients had complete pharmacokinetic and toxicity data. In 50 patients with measurable disease, the objective response rate was 60%, with complete responses in 6% of patients. Both doxorubicin and cyclophosphamide pharmacokinetics were associated with neutrophil toxicity. Cyclophosphamide exposure (the AUC) was significantly higher in patients with at least stable disease (n = 44) than in patients with progressive disease (n = 6; 945 mu mol . h/L [95% CI 889, 1001] vs 602 mu mol . h/L [95% CI 379, 825], p = 0.0002). No such correlation was found for doxorubicin. Body surface area was positively correlated with doxorubicin clearance; AST and patient age were negatively correlated with doxorubicin clearance; creatinine clearance was positively correlated with doxorubicinol clearance; and occasional concurrent use of carbamazepine was positively correlated with cyclophosphamide clearance. Conclusions: The proposed inhibitory population pharmacokinetic-pharmacodynamic model adequately described individual neutrophil counts after administration of doxorubicin and cyclophosphamide. In this patient population, exposure to cyclophosphamide, as assessed by the AUC, might have been a predictor of the treatment response, whereas exposure to doxorubicin was not. A prospective study should validate cyclophosphamide exposure as a predictive marker for the treatment response and clinical outcome in this patient group
  •  
5.
  • Joerger, Markus, et al. (författare)
  • Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients : a study by the European organization for research and treatment of cancer-pharmacology and molecular mechanisms group and new drug development group.
  • 2007
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 13:21, s. 6410-6418
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Paclitaxel and carboplatin are frequently used in advanced ovarian cancer following cytoreductive surgery. Threshold models have been used to predict paclitaxel pharmacokinetic-pharmacodynamics, whereas the time above paclitaxel plasma concentration of 0.05 to 0.2 μmol/L (tC > 0.05−0.2) predicts neutropenia. The objective of this study was to build a population pharmacokinetic-pharmacodynamic model of paclitaxel/carboplatin in ovarian cancer patients. Experimental Design: One hundred thirty-nine ovarian cancer patients received paclitaxel (175 mg/m2) over 3 h followed by carboplatin area under the concentration-time curve 5 mg/mL*min over 30 min. Plasma concentration-time data were measured, and data were processed using nonlinear mixed-effect modeling. Semiphysiologic models with linear or sigmoidal maximum response and threshold models were adapted to the data. Results: One hundred five patients had complete pharmacokinetic and toxicity data. In 34 patients with measurable disease, objective response rate was 76%. Neutrophil and thrombocyte counts were adequately described by an inhibitory linear response model. Paclitaxel tC > 0.05 was significantly higher in patients with a complete (91.8 h) or partial (76.3 h) response compared with patients with progressive disease (31.5 h; P = 0.02 and 0.05, respectively). Patients with paclitaxel tC > 0.05 > 61.4 h (mean value) had a longer time to disease progression compared with patients with paclitaxel tC > 0.05 < 61.4 h (89.0 versus 61.9 weeks; P = 0.05). Paclitaxel tC > 0.05 was a good predictor for severe neutropenia (P = 0.01), whereas carboplatin exposure (Cmax and area under the concentration-time curve) was the best predictor for thrombocytopenia (P < 10−4). Conclusions: In this group of patients, paclitaxel tC > 0.05 is a good predictive marker for severe neutropenia and clinical outcome, whereas carboplatin exposure is a good predictive marker for thrombocytopenia.
  •  
6.
  •  
7.
  •  
8.
  • Crombag, Marie-Rose B S, et al. (författare)
  • Does Older Age Lead to Higher Risk for Neutropenia in Patients Treated with Paclitaxel?
  • 2019
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 36:12, s. 163-
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: There is ongoing concern regarding increased toxicity from paclitaxel in elderly patients, particularly of severe neutropenia. Yet, data so far is controversial and this concern is not supported by a clinically relevant age-dependent difference in pharmacokinetics (PK) of paclitaxel. This study assessed whether age is associated with increased risk for paclitaxel-induced neutropenia.METHODS: Paclitaxel plasma concentration-time data, pooled from multiple different studies, was combined with available respective neutrophil count data during the first treatment cycle. Paclitaxel pharmacokinetic-pharmacodynamic (PK-PD) data was modeled using a non-linear mixed effects approach and a semiphysiological neutropenia model, where systemic paclitaxel exposure was linked to reduced proliferation of neutrophils. The impact of age was evaluated on relevant variables in the model, using a significance threshold of p < 0.005.RESULTS: Paclitaxel PK-PD data was evaluated from 300 patients, with a median age of 65 years (range 23-84 years), containing 116 patients ≥70 years (39%). First cycle neutrophil counts were adequately described by a threshold effect model of paclitaxel on the proliferation rate of neutrophils. Age as a continuous or dichotomous variable (≥70 versus <70 years) did not significantly impact sensitivity of the bone marrow to paclitaxel nor the average maturation time of neutrophils (both p > 0.005), causing a decline in the respective interindividual variability of <1%.CONCLUSION: Results from this large retrospective patient cohort do not suggest elderly patients to be at an increased risk of developing paclitaxel-associated neutropenia during the first treatment cycle. Reflexive dose reductions of paclitaxel in elderly patients are unlikely to improve the risk of severe neutropenia and may be deleterious.
  •  
9.
  • Damoiseaux, David, et al. (författare)
  • Population Pharmacokinetic Modelling to Support the Evaluation of Preclinical Pharmacokinetic Experiments with Lorlatinib
  • 2022
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier. - 0022-3549 .- 1520-6017. ; 111:2, s. 495-504
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of transporters and enzymes on drug pharmacokinetics is increasingly evaluated using genetically modified animals that have these proteins either knocked-out or their human orthologues transgenically expressed. Analysis of pharmacokinetic data obtained in such experiments is typically performed using non-compartmental analysis (NCA), which has limitations such as not being able to identify the PK parameter that is affected by the genetic modification of the enzymes or transporters and the requirement of intense and homogeneous sampling of all subjects. Here we used a compartmental population pharmacokinetic modeling approach using PK data from a series of genetically modified mouse experiments with lorlatinib to extend the results and conclusions from previously reported NCA analyses. A compartmental population pharmacokinetic model was built and physiologically plausible covariates were evaluated for the different mouse strains. With the model, similar effects of the strains on the area under the concentration-time curve (AUC) from 0 to 8 hours were found as for the NCA. Additionally, the differences in AUC between the strains were explained by specific effects on clearance and bioavailability for the strain with human expressing CYP3A4. Finally, effects of multidrug efflux transporters ATP-binding cassette (ABC) sub-family B member 1 (ABCB1) and G member 2 (ABCG2) on brain efflux were quantified. Use of compartmental population PK modeling yielded additional insight into the role of drug-metabolizing enzymes and drug transporters in mouse experiments compared to the NCA. Furthermore, these models allowed analysis of heterogeneous pooled datasets and the sparse organ concentration data in contrast to classical NCA analyses.
  •  
10.
  • Damoiseaux, David, et al. (författare)
  • Predictiveness of the Human-CYP3A4-Transgenic Mouse Model (Cyp3aXAV) for Human Drug Exposure of CYP3A4-Metabolized Drugs.
  • 2022
  • Ingår i: Pharmaceuticals (Basel, Switzerland). - : MDPI AG. - 1424-8247. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The extrapolation of drug exposure between species remains a challenging step in drug development, contributing to the low success rate of drug approval. As a consequence, extrapolation of toxicology from animal models to humans to evaluate safe, first-in-human (FIH) doses requires high safety margins. We hypothesized that a human-CYP3A4-expressing transgenic (Cyp3aXAV) mouse is a more predictive model for human drug exposure of CYP3A4-metabolized small-molecule drugs. Population pharmacokinetic models based on wild-type (WT) and Cyp3aXAV mouse pharmacokinetic data of oral lorlatinib, brigatinib, ribociclib and fisogatinib were allometrically scaled and compared to human exposure. Extrapolation of the Cyp3aXAV mouse model closely predicted the observed human exposure for lorlatinib and brigatinib with a 1.1-fold and 1.0-fold difference, respectively, compared to a 2.1-fold and 1.9-fold deviation for WT-based extrapolations of lorlatinib and brigatinib, respectively. For ribociclib, the extrapolated WT mouse model gave better predictions with a 1.0-fold deviation compared to a 0.3-fold deviation for the extrapolated Cyp3aXAV mouse model. Due to the lack of a human population pharmacokinetic model for fisogatinib, only median maximum concentration ratios were calculated, resulting in ratios of 1.0 and 0.6 for WT and Cyp3aXAV mice extrapolations, respectively. The more accurate predictions of human exposure in preclinical research based on the Cyp3aXAV mouse model can ultimately result in FIH doses associated with improved safety and efficacy and in higher success rates in drug development.
  •  
11.
  • Dorlo, Thomas P C, et al. (författare)
  • [Concomitant use of proton pump inhibitors and systemic corticosteroids].
  • 2013
  • Ingår i: Nederlandsch tijdschrift voor geneeskunde. - 0028-2162 .- 1876-8784. ; 157:19, s. A5540-
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To provide an overview of the incidence of peptic ulcer in patients who use systemic corticosteroids and of the underlying mechanism of action, in order to determine whether there is a need for gastric protection using proton pump inhibitors in these patients.DESIGN: Systematic literature review of published meta-analyses and case-control studies, supported by relevant literature on the effects of corticosteroids in relation to the development of ulcers.METHOD: Analysis of literature was performed using the PubMed database with the search terms 'adrenal cortex hormones', 'peptic ulcer' and their synonyms. Meta-analyses and case-control studies with more than 1000 patients were included.RESULTS: The literature search resulted in 970 articles, of which 3 were classified as relevant meta-analyses and 3 as relevant case-control studies. All meta-analyses indicated that peptic ulcer is, at the most, a rare complication of systemic corticosteroid therapy occurring in less than 0.4-1.8% of patients. As the incidence is low, there is no indication for routine prophylaxis with proton pump inhibitors in combination with systemic corticosteroids. There is convincing evidence showing an increased risk of ulcers and a poorer recovery from these when NSAIDs and systemic corticosteroids are used concomitantly; this is a combination for which a proton pump inhibitor should be prescribed.CONCLUSION: Systemic corticosteroid therapy only rarely causes a peptic ulcer. Routine prophylaxis with proton pump inhibitors is therefore not indicated for short-term systemic corticosteroid use.
  •  
12.
  • Janssen, Julie M, et al. (författare)
  • Population Pharmacokinetics of Docetaxel, Paclitaxel, Doxorubicin and Epirubicin in Pregnant Women with Cancer : A Study from the International Network of Cancer, Infertility and Pregnancy (INCIP).
  • 2021
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 60:6, s. 775-784
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Based on reassuring short-term foetal and maternal safety data, there is an increasing trend to administer chemotherapy during the second and third trimesters of pregnancy. The pharmacokinetics (PK) of drugs might change as a result of several physiological changes that occur during pregnancy, potentially affecting the efficacy and safety of chemotherapy.OBJECTIVE: With this analysis, we aimed to quantitatively describe the changes in the PK of docetaxel, paclitaxel, doxorubicin and epirubicin in pregnant women compared with non-pregnant women.METHODS: PK data from 9, 20, 22 and 16 pregnant cancer patients from the International Network of Cancer, Infertility and Pregnancy (INCIP) were available for docetaxel, paclitaxel, doxorubicin and epirubicin, respectively. These samples were combined with available PK data from non-pregnant patients. Empirical non-linear mixed-effects models were developed, evaluating fixed pregnancy effects and gestational age as covariates.RESULTS: Overall, 82, 189, 271, and 227 plasma samples were collected from pregnant patients treated with docetaxel, paclitaxel, doxorubicin and epirubicin, respectively. The plasma PK data were adequately described by the respective models for all cytotoxic drugs. Typical increases in central and peripheral volumes of distribution of pregnant women were identified for docetaxel, paclitaxel, doxorubicin and epirubicin. Additionally, docetaxel, doxorubicin and paclitaxel clearance were increased in pregnant patients, resulting in lower exposure in pregnant women compared with non-pregnant patients.CONCLUSION: Given the interpatient variability, the identified pregnancy-induced changes in PK do not directly warrant dose adjustments for the studied drugs. Nevertheless, these results underscore the need to investigate the efficacy of chemotherapy, when administered during pregnancy.
  •  
13.
  • Keizer, Ron J., et al. (författare)
  • A model of hypertension and proteinuria in cancer patients treated with the anti-angiogenic drug E7080
  • 2010
  • Ingår i: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Science and Business Media LLC. - 1567-567X .- 1573-8744. ; 37:4, s. 347-363
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypertension and proteinuria are commonly observed side-effects for anti-angiogenic drugs targeting the VEGF pathway. In most cases, hypertension can be controlled by prescription of anti-hypertensive (AH) therapy, while proteinuria often requires dose reductions or dose delays. We aimed to construct a pharmacokinetic-pharmacodynamic (PK-PD) model for hypertension and proteinuria following treatment with the experimental VEGF-inhibitor E7080, which would allow optimization of treatment, by assessing the influence of anti-hypertensive medication and dose reduction or dose delays in treating and avoiding toxicity. Data was collected from a phase I study of E7080 (n = 67), an inhibitor of multiple tyrosine kinases, among which VEGF. Blood pressure and urinalysis data were recorded weekly. Modeling was performed in NONMEM, and direct and indirect response PK-PD models were evaluated. A previously developed PK model was used. An indirect response PK-PD model described the increase in BP best, while the probability of developing proteinuria toxicity in response to exposure to E7080, was best described by a Markov transition model. This model may guide clinical interventions and provide treatment recommendations for E7080, and may serve as a template model for other drugs in this class.
  •  
14.
  • Keizer, Ron J., et al. (författare)
  • Performance of Methods for Handling Missing Categorical Covariate Data in Population Pharmacokinetic Analyses
  • 2012
  • Ingår i: AAPS Journal. - : Springer Science and Business Media LLC. - 1550-7416. ; 14:3, s. 601-611
  • Tidskriftsartikel (refereegranskat)abstract
    • In population pharmacokinetic analyses, missing categorical data are often encountered. We evaluated several methods of performing covariate analyses with partially missing categorical covariate data. Missing data methods consisted of discarding data (DROP), additional effect parameter for the group with missing data (EXTRA), and mixture methods in which the mixing probability was fixed to the observed fraction of categories (MIXobs), based on the likelihood of the concentration data (MIXconc), or combined likelihood of observed covariate data and concentration data (MIXjoint). Simulations were implemented to study bias and imprecision of the methods in datasets with equal-sized and unbalanced category ratios for a binary covariate as well as datasets with non-random missingness (MNAR). Additionally, the performance and feasibility of implementation was assessed in two real datasets. At either low (10%) or high (50%) levels of missingness, all methods performed similarly well. Performance was similar for situations with unbalanced datasets (3:1 covariate distribution) and balanced datasets. In the MNAR scenario, the MIX methods showed a higher bias in the estimation of CL and covariate effect than EXTRA. All methods could be applied to real datasets, except DROP. All methods perform similarly at the studied levels of missingness, but the DROP and EXTRA methods provided less bias than the mixture methods in the case of MNAR. However, EXTRA was associated with inflated type I error rates of covariate selection, while DROP handled data inefficiently.
  •  
15.
  • Keizer, Ron J., et al. (författare)
  • Two-stage model-based design of cancer phase I dose escalation trials : evaluation using the phase I program of barasertib (AZD1152)
  • 2012
  • Ingår i: Investigational new drugs. - : Springer Science and Business Media LLC. - 0167-6997 .- 1573-0646. ; 30:4, s. 1519-1530
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Modeling and simulation of pharmacokinetics and pharmacodynamics has previously been shown to be potentially useful in designing Phase I programs of novel anti-cancer agents that show hematological toxicity. In this analysis, a two-stage model-based trial design was evaluated retrospectively using data from the Phase I program with the aurora kinase inhibitor barasertib. Methods Data from two Phase I trials and four regimens were used (n = 79). Using barasertib-hydroxy QPA plasma concentrations and neutrophil count data from only study 1A, a PKPD model was developed and subsequently used to predict the MTD and a safe starting dose for the other trials. Results The PKPD model based on data from the first study adequately described the time course of neutrophil count fluctuation. The two-stage model-based design provided safe starting doses for subsequent phase I trials for barasertib. Predicted safe starting dose levels were higher than those used in two subsequent trials, but lower than used in the other trial. Discussion The two-stage approach could have been applied safely to define starting doses for alternative dosing strategies with barasertib. The limited improvement in efficiency for the phase I program of barasertib may have been due to the fact that starting doses for the studied phase I trials were already nearly optimal. Conclusion Application of the two-stage model-based trial design in Phase I programs with novel anti-cancer drugs that cause haematological toxicity is feasible, safe, and may lead to a reduction in the number of patient treated at sub-therapeutic dose-levels.
  •  
16.
  • Kip, Anke E., et al. (författare)
  • Clinical Pharmacokinetics of Systemically Administered Antileishmanial Drugs
  • 2018
  • Ingår i: Clinical Pharmacokinetics. - : Springer. - 0312-5963 .- 1179-1926. ; 57:2, s. 151-176
  • Forskningsöversikt (refereegranskat)abstract
    • This review describes the pharmacokinetic properties of the systemically administered antileishmanial drugs pentavalent antimony, paromomycin, pentamidine, miltefosine and amphotericin B (AMB), including their absorption, distribution, metabolism and excretion and potential drug-drug interactions. This overview provides an understanding of their clinical pharmacokinetics, which could assist in rationalising and optimising treatment regimens, especially in combining multiple antileishmanial drugs in an attempt to increase efficacy and shorten treatment duration. Pentavalent antimony pharmacokinetics are characterised by rapid renal excretion of unchanged drug and a long terminal half-life, potentially due to intracellular conversion to trivalent antimony. Pentamidine is the only antileishmanial drug metabolised by cytochrome P450 enzymes. Paromomycin is excreted by the kidneys unchanged and is eliminated fastest of all antileishmanial drugs. Miltefosine pharmacokinetics are characterized by a long terminal half-life and extensive accumulation during treatment. AMB pharmacokinetics differ per drug formulation, with a fast renal and faecal excretion of AMB deoxylate but a much slower clearance of liposomal AMB resulting in an approximately ten-fold higher exposure. AMB and pentamidine pharmacokinetics have never been evaluated in leishmaniasis patients. Studies linking exposure to effect would be required to define target exposure levels in dose optimisation but have only been performed for miltefosine. Limited research has been conducted on exposure at the drug's site of action, such as skin exposure in cutaneous leishmaniasis patients after systemic administration. Pharmacokinetic data on special patient populations such as HIV co-infected patients are mostly lacking. More research in these areas will help improve clinical outcomes by informed dosing and combination of drugs.
  •  
17.
  • Kip, Anke E, et al. (författare)
  • Macrophage Activation Marker Neopterin : A Candidate Biomarker for Treatment Response and Relapse in Visceral Leishmaniasis.
  • 2018
  • Ingår i: Frontiers in Cellular and Infection Microbiology. - : Frontiers Media SA. - 2235-2988. ; 8, s. 181-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Leishmania parasite resides and replicates within host macrophages during visceral leishmaniasis (VL). This study aimed to evaluate neopterin, a marker of macrophage activation, as possible pharmacodynamic biomarker to monitor VL treatment response and to predict long-term clinical relapse of VL. Following informed consent, 497 plasma samples were collected from East-African VL patients receiving a 28-day miltefosine monotherapy (48 patients) or 11-day combination therapy of miltefosine and liposomal amphotericin B (L-AMB, 48 patients). Neopterin was quantified with ELISA. Values are reported as median (inter-quartile range). Baseline neopterin concentrations were elevated in all VL patients at 98.8 (63.9-135) nmol/L compared to reported levels for healthy controls (<10 nmol/L). During the first treatment week, concentrations remained stable in monotherapy patients (p = 0.807), but decreased two-fold compared to baseline in the combination therapy patients (p < 0.01). In the combination therapy arm, neopterin concentrations increased significantly 1 day after L-AMB infusion compared to baseline for cured patients [137 (98.5-197) nmol/L, p < 0.01], but not for relapsing patients [84.4 (68.9-106) nmol/L, p = 0.96]. The neopterin parameter with the highest predictive power for VL relapse was a higher than 8% neopterin concentration increase between end of treatment and day 60 follow-up (ROC AUC 0.84), with a 93% sensitivity and 65% specificity. In conclusion, the identified neopterin parameter could be a potentially useful surrogate endpoint to identify patients in clinical trials at risk of relapse earlier during follow-up, possibly in a panel of biomarkers to increase its specificity.
  •  
18.
  • Kip, Anke E, et al. (författare)
  • Simultaneous population pharmacokinetic modelling of plasma and intracellular PBMC miltefosine concentrations in New World cutaneous leishmaniasis and exploration of exposure-response relationships.
  • 2018
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 73:8, s. 2104-2111
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Leishmania parasites reside within macrophages and the direct target of antileishmanial drugs is therefore intracellular. We aimed to characterize the intracellular PBMC miltefosine kinetics by developing a population pharmacokinetic (PK) model simultaneously describing plasma and intracellular PBMC pharmacokinetics. Furthermore, we explored exposure-response relationships and simulated alternative dosing regimens.PATIENTS AND METHODS: A population PK model was developed with NONMEM, based on 339 plasma and 194 PBMC miltefosine concentrations from Colombian cutaneous leishmaniasis patients [29 children (2-12 years old) and 22 adults] receiving 1.8-2.5 mg/kg/day miltefosine for 28 days.RESULTS: A three-compartment model with miltefosine distribution into an intracellular PBMC effect compartment best fitted the data. Intracellular PBMC distribution was described with an intracellular-to-plasma concentration ratio of 2.17 [relative standard error (RSE) 4.9%] and intracellular distribution rate constant of 1.23 day-1 (RSE 14%). In exploring exposure-response relationships, both plasma and intracellular model-based exposure estimates significantly influenced probability of cure. A proposed PK target for the area under the plasma concentration-time curve (day 0-28) of >535 mg·day/L corresponded to >95% probability of cure. In linear dosing simulations, 18.3% of children compared with 2.8% of adults failed to reach 535 mg·day/L. In children, this decreased to 1.8% after allometric dosing simulation.CONCLUSIONS: The developed population PK model described the rate and extent of miltefosine distribution from plasma into PBMCs. Miltefosine exposure was significantly related to probability of cure in this cutaneous leishmaniasis patient population. We propose an exploratory PK target, which should be validated in a larger cohort study.
  •  
19.
  • Kip, Anke E, et al. (författare)
  • Systematic review of biomarkers to monitor therapeutic response in leishmaniasis.
  • 2015
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 59:1, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, there has been a renewed interest in the development of new drugs for the treatment of leishmaniasis. This has spurred the need for pharmacodynamic markers to monitor and compare therapies specifically for visceral leishmaniasis, in which the primary recrudescence of parasites is a particularly long-term event that remains difficult to predict. We performed a systematic review of studies evaluating biomarkers in human patients with visceral, cutaneous, and post-kala-azar dermal leishmaniasis, which yielded a total of 170 studies in which 53 potential pharmacodynamic biomarkers were identified. In conclusion, the large majority of these biomarkers constituted universal indirect markers of activation and subsequent waning of cellular immunity and therefore lacked specificity. Macrophage-related markers demonstrate favorable sensitivity and times to normalcy, but more evidence is required to establish a link between these markers and clinical outcome. Most promising are the markers directly related to the parasite burden, but future effort should be focused on optimization of molecular or antigenic targets to increase the sensitivity of these markers. In general, future research should focus on the longitudinal evaluation of the pharmacodynamic biomarkers during treatment, with an emphasis on the correlation of studied biomarkers and clinical parameters.
  •  
20.
  • Soto, Elena, et al. (författare)
  • Predictive ability of a semi-mechanistic model for neutropenia in the development of novel anti-cancer agents : two case studies
  • 2011
  • Ingår i: Investigational new drugs. - : Springer Science and Business Media LLC. - 0167-6997 .- 1573-0646. ; 29:5, s. 984-995
  • Tidskriftsartikel (refereegranskat)abstract
    • In cancer chemotherapy neutropenia is a common dose-limiting toxicity. An ability to predict the neutropenic effects of cytotoxic agents based on proposed trial designs and models conditioned on previous studies would be valuable. The aim of this study was to evaluate the ability of a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model for myelosuppression to predict the neutropenia observed in Phase I clinical studies, based on parameter estimates obtained from prior trials. Pharmacokinetic and neutropenia data from 5 clinical trials for diflomotecan and from 4 clinical trials for indisulam were used. Data were analyzed and simulations were performed using the population approach with NONMEM VI. Parameter sets were estimated under the following scenarios: (a) data from each trial independently, (b) pooled data from all clinical trials and (c) pooled data from trials performed before the tested trial. Model performance in each of the scenarios was evaluated by means of predictive (visual and numerical) checks. The semi-mechanistic PK/PD model for neutropenia showed adequate predictive ability for both anti-cancer agents. For diflomotecan, similar predictions were obtained for the three scenarios. For indisulam predictions were better when based on data from the specific study, however when the model parameters were conditioned on data from trials performed prior to a specific study, similar predictions of the drug related-neutropenia profiles and descriptors were obtained as when all data were used. This work provides further indication that modeling and simulation tools can be applied in the early stages of drug development to optimize future trials.
  •  
21.
  • Vogel, Celia J., et al. (författare)
  • Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK
  • 2015
  • Ingår i: Pigment Cell & Melanoma Research. - : Wiley. - 1755-1471 .- 1755-148X. ; 28:3
  • Tidskriftsartikel (refereegranskat)abstract
    • No effective targeted therapy is currently available for NRAS mutant melanoma. Experimental MEK inhibition is rather toxic and has only limited efficacy in clinical trials. At least in part, this is caused by the emergence of drug resistance, which is commonly seen for single agent treatment and shortens clinical responses. Therefore, there is a dire need to identify effective companion drug targets for NRAS mutant melanoma. Here, we show that at concentrations where single drugs had little effect, ROCK inhibitors GSK269962A or Fasudil, in combination with either MEK inhibitor GSK1120212 (Trametinib) or ERK inhibitor SCH772984 cooperatively caused proliferation inhibition and cell death in vitro. Simultaneous inhibition of MEK and ROCK caused induction of Bim(EL), PARP, and Puma, and hence apoptosis. In vivo, MEK and ROCK inhibition suppressed growth of established tumors. Our findings warrant clinical investigation of the effectiveness of combinatorial targeting of MAPK/ERK and ROCK in NRAS mutant melanoma.
  •  
22.
  • Yu, Huixin, et al. (författare)
  • Quantification of the pharmacokinetic-toxicodynamic relationship of oral docetaxel co-administered with ritonavir.
  • 2020
  • Ingår i: Investigational new drugs. - : Springer Science and Business Media LLC. - 0167-6997 .- 1573-0646. ; 38:5, s. 1526-1532
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Oral formulations of docetaxel have successfully been developed as an alternative for intravenous administration. Co-administration with the enzyme inhibitor ritonavir boosts the docetaxel plasma exposure. In dose-escalation trials, the maximum tolerated doses for two different dosing regimens were established and dose-limiting toxicities (DLTs) were recorded. The aim of current analysis was to develop a pharmacokinetic (PK)-toxicodynamic (TOX) model to quantify the relationship between docetaxel plasma exposure and DLTs. Methods A total of 85 patients was included in the current analysis, 18 patients showed a DLT in the four-week observation period. A PK-TOX model was developed and simulations based on the PK-TOX model were performed. Results The final PK-TOX model was characterized by an effect compartment representing the toxic effect of docetaxel, which was linked to the probability of developing a DLT. Simulations of once-weekly, once-daily 60 mg and once-weekly, twice-daily 30 mg followed by 20 mg of oral docetaxel suggested that 14% and 34% of patients, respectively, would have a probability >25% to develop a DLT in a four-week period. Conclusions A PK-TOX model was successfully developed. This model can be used to evaluate the probability of developing a DLT following treatment with oral docetaxel and ritonavir in different dosing regimens.
  •  
23.
  • Zandvliet, Anthe S., et al. (författare)
  • Two-stage model-based clinical trial design to optimize phase I development of novel anticancer agents
  • 2010
  • Ingår i: Investigational new drugs. - : Springer Science and Business Media LLC. - 0167-6997 .- 1573-0646. ; 28:1, s. 61-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The phase I program of anticancer agents usually consists of multiple dose escalation studies to select a safe dose for various administration schedules. We hypothesized that pharmacokinetic and pharmacodynamic (PK-PD) modeling of an initial phase I study (stage 1) can be used for selection of an optimal starting dose for subsequent studies (stage 2) and that a post-hoc PK-PD analysis enhances the selection of a recommended dose for phase II evaluation. The aim of this analysis was to demonstrate that this two-stage model-based design, which does not interfere in the conduct of trials, is safe, efficient and effective. Methods PK and PD data of dose escalation studies were simulated for nine compounds and for five administration regimens (stage 1) for drugs with neutropenia as dose-limiting toxicity. PK-PD models were developed for each simulated study and were used to determine a starting dose for additional phase I studies (stage 2). The model-based design was compared to a conventional study design regarding safety (number of dose-limiting toxicities (DLTs)), efficiency (number of patients treated with a dose below the recommended dose) and effectiveness (precision of dose selection). Retrospective data of the investigational anticancer drug indisulam were used to show the applicability of the model-based design. Results The model-based design was as safe as the conventional design (median number of DLTs = 3) and resulted in a reduction of the number of patients who were treated with a dose below the recommended dose (-27%, power 89%). A post-hoc model-based determination of the recommended dose for future phase II studies was more precise than the conventional selection of the recommended dose (root mean squared error 8.3% versus 30%). Conclusions A two-stage model-based phase I design is safe for anticancer agents with dose-limiting myelosuppression and may enhance the efficiency of dose escalation studies by reducing the number of patients treated with a dose below the recommended dose and by increasing the precision of dose selection for phase II evaluation.
  •  
24.
  • Crombag, Marie-Rose B S, et al. (författare)
  • Exposure to Docetaxel in the Elderly Patient Population : a Population Pharmacokinetic Study.
  • 2019
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 36:12, s. 181-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Docetaxel is commonly used in elderly patients, who are frequently diagnosed with prostate cancer. Although previous studies revealed no clinically relevant impact of older age on docetaxel pharmacokinetics (PK), this may be masked by indication. Metastatic castration-resistant prostate cancer (mCRPC) patients were reported to have approximately two-times lower systemic exposure compared to patients with other solid tumors. This study assessed the impact of older age on docetaxel PK, also considering the effect of indication on docetaxel PK.METHODS: Prospectively collected docetaxel PK data from patients aged ≥70 was pooled with PK data from an earlier published multicenter study. A 3-compartment population PK model, including multiple covariates, was used to describe docetaxel plasma concentration-time data. We added the effect of prostate cancer (mCRPC and metastatic hormone-sensitive prostate cancer (mHSPC)) on clearance to this model. Hereafter, we evaluated the additional impact of older age on docetaxel clearance, using a significance threshold of p < 0.005.RESULTS: Docetaxel plasma concentration-time data from 157 patients were analyzed. Median age in the total cohort was 67 years (range 31-87), with 49% of the total cohort aged ≥70. The impact of age on docetaxel clearance was statistically significant (p < 0.005). For a typical patient, a 10-year and 20-year increase of age led to a reduction in clearance of 17% and 34%, respectively.CONCLUSION: In this cohort study, age significantly and independently affected docetaxel clearance, showing lower docetaxel clearance in elderly patients. In our cohort, mCRPC and mHSPC patients both had higher clearance than patients with other solid tumors.
  •  
25.
  • Damoiseaux, David, et al. (författare)
  • Physiologically‐based pharmacokinetic model to predict doxorubicin and paclitaxel exposure in infants through breast milk
  • 2023
  • Ingår i: CPT. - : John Wiley & Sons. - 2163-8306. ; 12:12, s. 1931-1944
  • Tidskriftsartikel (refereegranskat)abstract
    • Limited information is available concerning infant exposure and safety when breastfed by mothers receiving chemotherapy. Whereas defining distribution to breast milk is important to infer drug exposure, infant pharmacokinetics also determine to what extent the infant will be exposed to potential toxic effects. We aimed to assess the impact of chemotherapy containing breast milk on infants by predicting systemic and local (intestinal) exposure of paclitaxel and doxorubicin in infants through breast milk using a physiologically-based pharmacokinetic (PBPK) approach. Whole-body PBPK models of i.v. paclitaxel and doxorubicin were extended from the literature, with an oral absorption component to enable predictions in infants receiving paclitaxel or doxorubicin-containing breast milk. For safety considerations, worst-case scenarios were explored. Finally, paclitaxel and doxorubicin exposures in plasma and intestinal tissue of infants following feeding of breast milk from paclitaxel- or doxorubicin-treated mothers were simulated and breast milk discarding strategies were evaluated. The upper 95th percentile of the predicted peak concentrations in peripheral venous blood were 3.48 and 0.74 nM (0.4%–1.7% and 0.1%–1.8% of on-treatment) for paclitaxel and doxorubicin, respectively. Intestinal exposure reached peak concentrations of 1.0 and 140 μM for paclitaxel and doxorubicin, respectively. Discarding breast milk for the first 3 days after maternal chemotherapy administration reduced systemic and tissue exposures even further, to over 90% and 80% for paclitaxel and doxorubicin, respectively. PBPK simulations of chemotherapy exposure in infants after breastfeeding with chemotherapy containing breast milk suggest that particularly local gastrointestinal adverse events should be monitored, whereas systemic adverse events are not expected.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 66

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy