SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Belbin O) "

Sökning: WFRF:(Belbin O)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  • Alcolea, D., et al. (författare)
  • Use of plasma biomarkers for AT(N) classification of neurodegenerative dementias
  • 2021
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 92:11, s. 1206-1214
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: All categories included in the AT(N) classification can now be measured in plasma. However, their agreement with cerebrospinal fluid (CSF) markers is not fully established. A blood signature to generate the AT(N) classification would facilitate early diagnosis of patients with Alzheimer's disease (AD) through an easy and minimally invasive approach. Methods: We measured Aβ, pTau181 and neurofilament light (NfL) in 150 plasma samples of the Sant Pau Initiative on Neurodegeneration cohort including patients with mild cognitive impairment, AD dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal participants. We classified participants in the AT(N) categories according to CSF biomarkers and studied the diagnostic value of plasma biomarkers within each category individually and in combination. Results: The plasma Aβ composite, pTau181 and NfL yielded areas under the curve (AUC) of 0.75, 0.78 and 0.88 to discriminate positive and negative participants in their respective A, T and N categories. The combination of all three markers did not outperform pTau181 alone (AUC=0.81) to discriminate A+T+ from A-T- participants. There was a moderate correlation between plasma Aβ composite and CSF Aβ1-42/Aβ1-40 (Rho=-0.5, p<0.001) and between plasma pTau181 and CSF pTau181 in the entire cohort (Rho=0.51, p<0.001). NfL levels in plasma showed high correlation with those in CSF (Rho=0.78, p<0.001). Conclusions: Plasma biomarkers are useful to detect the AT(N) categories, and their use can differentiate patients with pathophysiological evidence of AD. A blood AT(N) signature may facilitate early diagnosis and follow-up of patients with AD through an easy and minimally invasive approach. © Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.
  •  
5.
  • Bejanin, A., et al. (författare)
  • Association of Apolipoprotein e ϵ4 Allele with Clinical and Multimodal Biomarker Changes of Alzheimer Disease in Adults with down Syndrome
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:8, s. 937-947
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Alzheimer disease (AD) is the leading cause of death in individuals with Down syndrome (DS). Previous studies have suggested that the APOE ϵ4 allele plays a role in the risk and age at onset of dementia in DS; however, data on in vivo biomarkers remain scarce. Objective: To investigate the association of the APOE ϵ4 allele with clinical and multimodal biomarkers of AD in adults with DS. Design, Setting, and Participants: This dual-center cohort study recruited adults with DS in Barcelona, Spain, and in Cambridge, UK, between June 1, 2009, and February 28, 2020. Included individuals had been genotyped for APOE and had at least 1 clinical or AD biomarker measurement; 2 individuals were excluded because of the absence of trisomy 21. Participants were either APOE ϵ4 allele carriers or noncarriers. Main Outcomes and Measures: Participants underwent a neurological and neuropsychological assessment. A subset of participants had biomarker measurements: Aβ1-42, Aβ1-40, phosphorylated tau 181 (pTau181) and neurofilament light chain (NfL) in cerebrospinal fluid (CSF), pTau181, and NfL in plasma; amyloid positron emission tomography (PET); fluorine 18-labeled-fluorodeoxyglucose PET; and/or magnetic resonance imaging. Age at symptom onset was compared between APOE ϵ4 allele carriers and noncarriers, and within-group local regression models were used to compare the association of biomarkers with age. Voxelwise analyses were performed to assess topographical differences in gray matter metabolism and volume. Results: Of the 464 adults with DS included in the study, 97 (20.9%) were APOE ϵ4 allele carriers and 367 (79.1%) were noncarriers. No differences between the 2 groups were found by age (median [interquartile range], 45.9 [36.4-50.2] years vs 43.7 [34.9-50.2] years; P =.56) or sex (51 male carriers [52.6%] vs 199 male noncarriers [54.2%]). APOE ϵ4 allele carriers compared with noncarriers presented with AD symptoms at a younger age (mean [SD] age, 50.7 [4.4] years vs 52.7 [5.8] years; P =.02) and showed earlier cognitive decline. Locally estimated scatterplot smoothing curves further showed between-group differences in biomarker trajectories with age as reflected by nonoverlapping CIs. Specifically, carriers showed lower levels of the CSF Aβ1-42 to Aβ1-40 ratio until age 40 years, earlier increases in amyloid PET and plasma pTau181, and earlier loss of cortical metabolism and hippocampal volume. No differences were found in NfL biomarkers or CSF total tau and pTau181. Voxelwise analyses showed lower metabolism in subcortical and parieto-occipital structures and lower medial temporal volume in APOE ϵ4 allele carriers. Conclusions and Relevance: In this study, the APOE ϵ4 allele was associated with earlier clinical and biomarker changes of AD in DS. These results provide insights into the mechanisms by which APOE increases the risk of AD, emphasizing the importance of APOE genotype for future clinical trials in DS. © 2021 American Medical Association. All rights reserved.
  •  
6.
  • Cohain, AT, et al. (författare)
  • An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease
  • 2021
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 547-
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated plasma cholesterol and type 2 diabetes (T2D) are associated with coronary artery disease (CAD). Individuals treated with cholesterol-lowering statins have increased T2D risk, while individuals with hypercholesterolemia have reduced T2D risk. We explore the relationship between lipid and glucose control by constructing network models from the STARNET study with sequencing data from seven cardiometabolic tissues obtained from CAD patients during coronary artery by-pass grafting surgery. By integrating gene expression, genotype, metabolomic, and clinical data, we identify a glucose and lipid determining (GLD) regulatory network showing inverse relationships with lipid and glucose traits. Master regulators of the GLD network also impact lipid and glucose levels in inverse directions. Experimental inhibition of one of the GLD network master regulators, lanosterol synthase (LSS), in mice confirms the inverse relationships to glucose and lipid levels as predicted by our model and provides mechanistic insights.
  •  
7.
  • Delaby, C., et al. (författare)
  • Blood amyloid and tau biomarkers as predictors of cerebrospinal fluid profiles
  • 2022
  • Ingår i: Journal of Neural Transmission. - : Springer Science and Business Media LLC. - 0300-9564 .- 1435-1463. ; 129, s. 231-237
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Blood biomarkers represent a major advance for improving the management, diagnosis, and monitoring of Alzheimer's disease (AD). However, their context of use in relation to routine cerebrospinal fluid (CSF) analysis for the quantification of amyloid peptides and tau proteins remains to be determined. Methods We studied in two independent cohorts, the performance of blood biomarkers in detecting "nonpathological" (A-/T-/N-), amyloid (A+) or neurodegenerative (T+ /N+) CSF profiles. Results Plasma A beta(1-42)/A beta(1-40) ratio and phosphorylated tau (p-tau(181)) were independent and complementary predictors of the different CSF profile and in particular of the nonpathological (A-/T-/N-) profile with a sensitivity and specificity close to 85%. These performances and the corresponding biomarker thresholds were significantly different from those related to AD detection. Conclusion The use of blood biomarkers to identify patients who may benefit from secondary CSF testing represents an attractive stratification strategy in the clinical management of patients visiting memory clinics. This could reduce the need for lumbar puncture and foreshadow the use of blood testing on larger populations.
  •  
8.
  •  
9.
  • Iulita, M. F., et al. (författare)
  • Association of biological sex with clinical outcomes and biomarkers of Alzheimer's disease in adults with Down syndrome
  • 2023
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of sex differences in Alzheimer's disease is increasingly recognized as a key priority in research and clinical development. People with Down syndrome represent the largest population with a genetic link to Alzheimer's disease (>90% in the 7th decade). Yet, sex differences in Alzheimer's disease manifestations have not been fully investigated in these individuals, who are key candidates for preventive clinical trials. In this double-centre, cross-sectional study of 628 adults with Down syndrome [46% female, 44.4 (34.6; 50.7) years], we compared Alzheimer's disease prevalence, as well as cognitive outcomes and AT(N) biomarkers across age and sex. Participants were recruited from a population-based health plan in Barcelona, Spain, and from a convenience sample recruited via services for people with intellectual disabilities in England and Scotland. They underwent assessment with the Cambridge Cognitive Examination for Older Adults with Down Syndrome, modified cued recall test and determinations of brain amyloidosis (CSF amyloid-beta 42 / 40 and amyloid-PET), tau pathology (CSF and plasma phosphorylated-tau181) and neurodegeneration biomarkers (CSF and plasma neurofilament light, total-tau, fluorodeoxyglucose-PET and MRI). We used within-group locally estimated scatterplot smoothing models to compare the trajectory of biomarker changes with age in females versus males, as well as by apolipoprotein.4 carriership. Our work revealed similar prevalence, age at diagnosis and Cambridge Cognitive Examination for Older Adults with Down Syndrome scores by sex, but males showed lower modified cued recall test scores from age 45 compared with females. AT(N) biomarkers were comparable in males and females. When considering apolipoprotein.4, female.4 carriers showed a 3-year earlier age at diagnosis compared with female non-carriers (50.5 versus 53.2 years, P = 0.01). This difference was not seen in males (52.2 versus 52.5 years, P = 0.76). Our exploratory analyses considering sex, apolipoprotein.4 and biomarkers showed that female.4 carriers tended to exhibit lower CSF amyloid-beta 42/amyloid-beta 40 ratios and lower hippocampal volume compared with females without this allele, in line with the clinical difference. This work showed that biological sex did not influence clinical and biomarker profiles of Alzheimer's disease in adults with Down syndrome. Consideration of apolipoprotein.4 haplotype, particularly in females, may be important for clinical research and clinical trials that consider this population. Accounting for, reporting and publishing sex-stratified data, even when no sex differences are found, is central to helping advance precision medicine.
  •  
10.
  • Jansen, Iris E, et al. (författare)
  • Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers.
  • 2022
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 144:5, s. 821-842
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n=8074; replication n=5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
  •  
11.
  • Lleo, A., et al. (författare)
  • Phosphorylated tau181 in plasma as a potential biomarker for Alzheimer's disease in adults with Down syndrome
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma tau phosphorylated at threonine 181 (p-tau181) predicts Alzheimer's disease (AD) pathology with high accuracy in the general population. In this study, we investigated plasma p-tau181 as a biomarker of AD in individuals with Down syndrome (DS). We included 366 adults with DS (240 asymptomatic, 43 prodromal AD, 83 AD dementia) and 44 euploid cognitively normal controls. We measured plasma p-tau181 with a Single molecule array (Simoa) assay. We examined the diagnostic performance of p-tau181 for the detection of AD and the relationship with other fluid and imaging biomarkers. Plasma p-tau181 concentration showed an area under the curve of 0.80 [95% CI 0.73-0.87] and 0.92 [95% CI 0.89-0.95] for the discrimination between asymptomatic individuals versus those in the prodromal and dementia groups, respectively. Plasma p-tau181 correlated with atrophy and hypometabolism in temporoparietal regions. Our findings indicate that plasma p-tau181 concentration can be useful to detect AD in DS. Plasma tau phosphorylated at threonine 181 (p-tau181) predicts Alzheimer's disease (AD) pathology. Here, the authors investigated whether plasma ptau181 could be a potential biomarker of AD in individuals with Down syndrome (DS) and find plasma p-tau181 can detect AD in DS adults.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy