SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Belonohy ) "

Sökning: WFRF:(Belonohy )

  • Resultat 1-25 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
2.
  •  
3.
  •  
4.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Hobirk, J., et al. (författare)
  • The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium
  • 2023
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 63:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challenges arising from 37 MW of injected power in the ITER like wall environment, keeping the radiation in the edge and core controlled, avoiding MHD instabilities and reaching high neutron rates. The Deuterium hybrid plasmas have been re-run in Tritium and methods have been found to keep the radiation controlled but not at high fusion performance probably due to time constraints. For the first time this scenario has been run in Deuterium-Tritium (50:50). These plasmas were re-optimised to have a radiation-stable H-mode entry phase, good impurity control through edge Ti gradient screening and optimised performance with fusion power exceeding 10 MW for longer than three alpha particle slow down times, 8.3 MW averaged over 5 s and fusion energy of 45.8 MJ.
  •  
15.
  • Horvath, L., et al. (författare)
  • Isotope dependence of the type I ELMy H-mode pedestal in JET-ILW hydrogen and deuterium plasmas
  • 2021
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 61:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The pedestal structure, edge transport and linear MHD stability have been analyzed in a series of JET with the ITER-like wall hydrogen (H) and deuterium (D) type I ELMy H-mode plasmas. The pedestal pressure is typically higher in D than in H at the same input power and gas rate, with the difference mainly due to lower density in H than in D (Maggi et al (JET Contributors) 2018 Plasma Phys. Control. Fusion 60 014045). A power balance analysis of the pedestal has shown that higher inter-ELM separatrix loss power is required in H than in D to maintain a similar pedestal top pressure. This is qualitatively consistent with a set of interpretative EDGE2D-EIRENE simulations for H and D plasmas, showing that higher edge particle and heat transport coefficients are needed in H than in D to match the experimental profiles. It has also been concluded that the difference in neutral penetration between H and D leads only to minor changes in the upstream density profiles and with trends opposite to experimental observations. This implies that neutral penetration has a minor role in setting the difference between H and D pedestals, but higher ELM and/or inter-ELM transport are likely to be the main players. The interpretative EDGE2D-EIRENE simulations, with simultaneous upstream and outer divertor target profile constraints, have indicated higher separatrix electron temperature in H than in D for a pair of discharges at low fueling gas rate and similar stored energy (which required higher input power in H than in D at the same gas rate). The isotope dependence of linear MHD pedestal stability has been found to be small, but if a higher separatrix temperature is considered in H than in D, this could lead to destabilization of peeling-ballooning modes and shrinking of the stability boundary, qualitatively consistent with the reduced pedestal confinement in H.
  •  
16.
  •  
17.
  •  
18.
  • Joffrin, E., et al. (författare)
  • Impact of divertor geometry on H-mode confinement in the JET metallic wall
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent experiments with the ITER-like wall have demonstrated that changes in divertor strike point position are correlated with strong modification of the global energy confinement. The impact on energy confinement is observable both on the pedestal confinement and core normalised gradients. The corner configuration shows an increased core density gradient length and ion pressure indicating a better ion confinement. The study of neutral re-circulation indicates the neutral pressure in the main chamber varies inversely with the energy confinement and a correlation between the pedestal total pressure and the neutral pressure in the main chamber can be established. It does not appear that charge exchange losses nor momentum losses could explain this effect, but it may be that changes in edge electric potential are playing a role at the plasma edge. This study emphasizes the importance of the scrape-off layer (SOL) conditions on the pedestal and core confinement.
  •  
19.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
20.
  •  
21.
  • Kirov, K. K., et al. (författare)
  • Analysis of the fusion performance, beam-target neutrons and synergistic effects of JET's high-performance pulses
  • 2021
  • Ingår i: Nuclear Fusion. - JET, EUROfus Consortium, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Kirov, K. K.; Belonohy, E.; Challis, C. D.; Garzotti, L.; Keeling, D.; King, D.; Lomas, P. J.; Rimini, F. G.] Culham Sci Ctr, Culham Ctr Fus Energy, United Kingdom Atom Energy Author, Abingdon OX14 3DB, Oxon, England. [Eriksson, J.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Frigione, D.] ENEA CR Frascati, Unita Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy. [Giacomelli, L.] CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy. [Hobirk, J.; Kappatou, A.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Lerche, E.; Van Eester, D.] Lab Plasma Phys, KMS ERM Renaissancelaan,30 Ave Renaissance, B-1000 Brussels, Belgium. [Nocente, M.] Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy. [Reux, C.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Sips, A. C. C.] European Commiss, B-1049 Brussels, Belgium. : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 61:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Achieving high neutron yields in today's fusion research relies on high-power auxiliary heating in order to attain required core temperatures. This is usually achieved by means of high neutral beam (NB) and radio frequency (RF) power. Application of NB power is accompanied by production of fast beam ions and associated beam-target (BT) reactions. In standard JET operational conditions, deuterium (D) NBs are injected into D plasmas. The injected beams comprise D atoms at full, one-half and one-third injected energy. Typically, the full energy of the injected D beams is between 90 and 120 keV, providing 1.4-2.0 MW of heating, which is about half of the injected power. Half-energy D beams carry about one-third of the injected power and the rest of the power is carried by the third energy fraction of D beams. Under these conditions, thermal fusion reactions, i.e. those between plasma ions, and BT reactions are of the same order of magnitude. This study addresses important issues regarding the impact of density, central electron and ion temperatures and their ratio, T-i(0)/T-e(0), on fusion performance, measured by the total neutron yield and BT neutron counts. NB/RF synergistic effects are discussed as well. It is demonstrated that thermal fusion gain increases linearly with normalised plasma pressure, beta(N), and confinement, B-t tau. The BT neutrons are, however, more difficult to predict and this task in general requires numerical treatment. In this study, BT neutrons in JET's best-performing baseline and hybrid pulses are analysed and the underlying dependencies discussed. Central fast ion densities are found to decrease with increased density and density peaking. This is attributed to poorer beam penetration at high density. The BT reactions however are unchanged and can even increase if operating at higher core temperatures. An increase in the central ion temperature and T-i(0)/T-e(0) ratio leads to higher total and BT reaction rates whilst simultaneously the ratio of the BT to total neutron decreases significantly. NB/RF synergistic effects are found to have a negligible impact on total neutron rate. This can be explained by the reduced beam penetration in high-density conditions leading to lower central fast ion density.
  •  
22.
  •  
23.
  •  
24.
  • Krasilnikov, A., et al. (författare)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
25.
  • Litaudon, X., et al. (författare)
  • 14 MeV calibration of JET neutron detectors-phase 1: Calibration and characterization of the neutron source
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e.The neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ± 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy