SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Benesperi Iacopo) "

Sökning: WFRF:(Benesperi Iacopo)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benesperi, Iacopo, et al. (författare)
  • Copper Coordination Complexes for Energy-Relevant Applications
  • 2020
  • Ingår i: Energies. - : MDPI AG. - 1996-1073. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper coordination complexes have emerged as a group of transition metal complexes that play important roles in solar energy conversion, utilization and storage, and have the potential to replace the quintessential commonly used transition metals, like Co, Pt, Ir and Ru as light sensitizers, redox mediators, electron donors and catalytic centers. The applications of copper coordination compounds in chemistry and energy related technologies are many and demonstrate their rightful place as sustainable, low toxicity and Earth-abundant alternative materials. In this perspective we show the most recent impact made by copper coordination complexes in dye-sensitized solar cells and other energy relevant applications.
  •  
2.
  • Benesperi, Iacopo, et al. (författare)
  • Dynamic dimer copper coordination redox shuttles
  • 2022
  • Ingår i: Chem. - : Elsevier. - 2451-9308 .- 2451-9294. ; 8:2, s. 439-449
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary Conventional redox mediators based on metal coordination complexes undergo electron transfer through the change in oxidation state of the metal center. However, electron transfer kinetics are offset toward preferred oxidation states when preorganized ligands constrain the reorganization of the coordination sphere. In contrast, we report here on dimeric copper(II/I) redox couples, wherein the extent of oxidation/reduction of two metal centers dictates the dynamic formation of dimer and monomer complexes: the dimeric (Cu(I))2 transitions to monomers of Cu(II). The bis(thiazole/pyrrole)-bipyridine tetradentate ligands stabilize both oxidation states of the unique redox systems. The dynamic dimer redox mediators offer a viable two-electron redox mechanism to develop efficient hybrid solar cells through inhibited recombination and rapid charge transport. Density functional theory calculations reveal inner reorganization energies for single-electron transfer as low as 0.27 eV, marking the dimeric complexes superior redox systems over single complexes as liquid and potentially solid-state electrolytes.
  •  
3.
  • Benesperi, Iacopo, et al. (författare)
  • The researcher's guide to solid-state dye-sensitized solar cells
  • 2018
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 6:44, s. 11903-11942
  • Forskningsöversikt (refereegranskat)abstract
    • In order to sustainably support its ever-increasing energy demand, the human society will have to harvest renewable energy wherever and whenever possible. When converting light to electricity, silicon solar cells are the technology of choice to harvest direct sunlight due to their high performance and continuously dropping price. For diffused light and indoor applications, however, silicon is not the material of choice. To power the next gizmo in your smart home, dye-sensitized solar cells (DSCs) are a viable alternative. Made from inexpensive, earth-abundant, and non-toxic materials, DSCs perform best at low light intensity. So far, issues such as leakage of the liquid electrolyte and its corrosive nature have limited the commercialization of this technology. To overcome these limitations, solid-state DSCs (ssDSCs) - in which the liquid electrolyte is replaced by a solid material - have been developed. For many years their efficiencies have been poor, preventing them from being widely employed. In the past six years, however, research efforts have led them to rival with their liquid counterparts. Here, we will review recent advancements in the field of ssDSCs. Every device component will be acknowledged, from metal oxides and new dyes to novel hole transporters, dopants, counter-electrodes and device architectures. After reviewing materials, long-term stability of devices will be addressed, finally giving an insight into the future that awaits this exciting technology.
  •  
4.
  • Jacobsson, Jesper, 1984-, et al. (författare)
  • An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles
  • 2022
  • Ingår i: Nature Energy. - : Springer Nature. - 2058-7546. ; 7:1, s. 107-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences. 
  •  
5.
  • Leandri, Valentina, et al. (författare)
  • Exploring the Optical and Electrochemical Properties of Homoleptic versus Heteroleptic Diimine Copper(I) Complexes
  • 2019
  • Ingår i: Inorganic Chemistry. - : AMER CHEMICAL SOC. - 0020-1669 .- 1520-510X. ; 58:18, s. 12167-12177
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to ligand scrambling, the synthesis and investigation of the properties of heteroleptic Cu(I) complexes can be a challenging task. In this work, we have studied the optical and electrochemical properties of a series of homoleptic complexes, such as [Cu(dbda)(2)](+), [Cu(dmp)(2)](+), [Cu(Br-dmp)(2)](+), [Cu(bcp)(2)](+), [Cu(dsbtmp)(2)](+), [Cu(biq)(2)](+), and [Cu(dap)(2)](+) in solution, and those of their heteroleptics [Cu(dbda)(dmp)](+), [Cu(dbda)(Br-dmp)](+), [Cu(dbda)(bcp)](+), [Cu(dbda)(dsbtmp))(+), [Cu(dbda)(biq)](+), [Cu(dbda)(dap)](+) adsorbed on the surface of anatase TiO2 (dbda = 6,6'-dimethyl-2,2'-bipyridine-4,4'-dibenzoic acid; dmp = 2,9-dimethyl-1,10-phenanthroline; Br-dmp = 5-bromo 2,9-dimethyl-1,10-phenanthroline; bcp = bathocuproine or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline; dsbtmp = 2,9-di(sec-butyl)-3,4,7,8-tetramethyl-1,10-phenanthroline; biq = 2,2'-biquinoline; dap = 2,9-dianisyl-1,10-phenanthroline). We show that the maximum absorption wavelengths of the heteroleptic complexes on TiO2 can be reasonably predicted from those of the homoleptic complexes in solution through a simple linear relation, whereas the prediction of their redox properties is less trivial. In the latter case, two different linear patterns emerge: one including the ligands bcp, biq, and dap and another one including the ligands dmp, Br-dmp, and dsbtmp. We offer an interpretation of the data based on the chemical structure of the ligands. On one hand, ligands bcp, biq, and dap possess a more extended pi-conjugated system, which gives a more prominent contribution to the overall redox properties of the ligand dbda. On the other hand, the ligands dmp, Br-dmp, and dsbtmp are all phenanthroline-based containing alkyl substituents and contribute less than dbda to the overall redox properties.
  •  
6.
  • Lindh, Linnea, et al. (författare)
  • Dye-sensitized solar cells based on Fe N-heterocyclic carbene photosensitizers with improved rod-like push-pull functionality
  • 2021
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 12:48, s. 16035-16053
  • Tidskriftsartikel (refereegranskat)abstract
    • A new generation of octahedral iron(ii)-N-heterocyclic carbene (NHC) complexes, employing different tridentate C^N^C ligands, has been designed and synthesized as earth-abundant photosensitizers for dye sensitized solar cells (DSSCs) and related solar energy conversion applications. This work introduces a linearly aligned push-pull design principle that reaches from the ligand having nitrogen-based electron donors, over the Fe(ii) centre, to the ligand having an electron withdrawing carboxylic acid anchor group. A combination of spectroscopy, electrochemistry, and quantum chemical calculations demonstrate the improved molecular excited state properties in terms of a broader absorption spectrum compared to the reference complex, as well as directional charge-transfer displacement of the lowest excited state towards the semiconductor substrate in accordance with the push-pull design. Prototype DSSCs based on one of the new Fe NHC photosensitizers demonstrate a power conversion efficiency exceeding 1% already for a basic DSSC set-up using only the I−/I3−redox mediator and standard operating conditions, outcompeting the corresponding DSSC based on the homoleptic reference complex. Transient photovoltage measurements confirmed that adding the co-sensitizer chenodeoxycholic acid helped in improving the efficiency by increasing the electron lifetime in TiO2. Time-resolved spectroscopy revealed spectral signatures for successful ultrafast (<100 fs) interfacial electron injection from the heteroleptic dyes to TiO2. However, an ultrafast recombination process results in undesirable fast charge recombination from TiO2back to the oxidized dye, leaving only 5-10% of the initially excited dyes available to contribute to a current in the DSSC. On slower timescales, time-resolved spectroscopy also found that the recombination dynamics (longer than 40 μs) were significantly slower than the regeneration of the oxidized dye by the redox mediator (6-8 μs). Therefore it is the ultrafast recombination down to fs-timescales, between the oxidized dye and the injected electron, that remains as one of the main bottlenecks to be targeted for achieving further improved solar energy conversion efficiencies in future work.
  •  
7.
  • Michaels, Hannes, et al. (författare)
  • Challenges and prospects of ambient hybrid solar cell applications
  • 2021
  • Ingår i: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 12:14, s. 5002-5015
  • Forskningsöversikt (refereegranskat)abstract
    • The impending implementation of billions of Internet of Things and wireless sensor network devices has the potential to be the next digital revolution, if energy consumption and sustainability constraints can be overcome. Ambient photovoltaics provide vast universal energy that can be used to realise near-perpetual intelligent IoT devices which can directly transform diffused light energy into computational inferences based on artificial neural networks and machine learning. At the same time, a new architecture and energy model needs to be developed for IoT devices to optimize their ability to sense, interact, and anticipate. We address the state-of-the-art materials for indoor photovoltaics, with a particular focus on dye-sensitized solar cells, and their effect on the architecture of next generation IoT devices and sensor networks.
  •  
8.
  • Michaels, Hannes, et al. (författare)
  • Copper Complexes with Tetradentate Ligands for Enhanced Charge Transport in Dye-Sensitized Solar Cells
  • 2018
  • Ingår i: Inorganics. - : MDPI AG. - 2304-6740. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In dye-sensitized solar cells (DSCs), the redox mediator is responsible for the regeneration of the oxidized dye and for the hole transport towards the cathode. Here, we introduce new copper complexes with tetradentate 6,6-bis(4-(S)-isopropyl-2-oxazolinyl)-2,2-bipyridine ligands, Cu(oxabpy), as redox mediators. Copper coordination complexes with a square-planar geometry show low reorganization energies and thus introduce smaller losses in photovoltage. Slow recombination kinetics of excited electrons between the TiO2 and Cu-II(oxabpy) species lead to an exceptionally long electron lifetime, a high Fermi level in the TiO2, and a high photovoltage of 920 mV with photocurrents of 10 mA.cm(-2) and 6.2% power conversion efficiency. Meanwhile, a large driving force remains for the dye regeneration of the Y123 dye with high efficiencies. The square-planar Cu(oxabpy) complexes yield viscous gel-like solutions. The unique charge transport characteristics are attributed to a superposition of diffusion and electronic conduction. An enhancement in charge transport performance of 70% despite the higher viscosity is observed upon comparison of Cu(oxabpy) to the previously reported Cu(tmby)(2) redox electrolyte.
  •  
9.
  •  
10.
  • Michaels, Hannes, et al. (författare)
  • Dye-sensitized solar cells under ambient light powering machine learning : towards autonomous smart sensors for the internet of things
  • 2020
  • Ingår i: Chemical Science. - : ROYAL SOC CHEMISTRY. - 2041-6520 .- 2041-6539. ; 11:11, s. 2895-2906
  • Tidskriftsartikel (refereegranskat)abstract
    • The field of photovoltaics gives the opportunity to make our buildings "smart'' and our portable devices "independent", provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper(II/I) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 mu W cm(-2) at 1000 lux; 32.7%, 50 mu W cm(-2) at 500 lux and 31.4%, 19 mu W cm(-2) at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm(2) was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 x 10(15) photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 x 10(20) photons required for training and verification of an artificial neural network were harvested with 64 cm(2) photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and "smart" IoT devices powered through an energy source that is largely untapped.
  •  
11.
  •  
12.
  • Munoz-Garcia, Ana Belen, et al. (författare)
  • Dye-sensitized solar cells strike back
  • 2021
  • Ingår i: Chemical Society Reviews. - : Royal Society of Chemistry. - 0306-0012 .- 1460-4744. ; 50:22, s. 12450-12550
  • Forskningsöversikt (refereegranskat)abstract
    • Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.
  •  
13.
  • Vlachopoulos, Nick, et al. (författare)
  • New approaches in component design for dye-sensitized solar cells
  • 2021
  • Ingår i: Sustainable Energy & Fuels. - : Royal Society of Chemistry. - 2398-4902. ; 5:2, s. 367-383
  • Tidskriftsartikel (refereegranskat)abstract
    • The present perspective presents a number of issues related to the current direction of DSSC research, with emphasis on the transition from iodide-containing electrolyte to charge-transport media (CTMs), electrolytes or solid-state conductors based on inorganic coordination complexes, aiming to attain a better light-to-electricity conversion efficiency, associated with larger photovoltage, and long-term stability. Such a change necessitates the concomitant introduction of novel dyes and counter electrodes. The first part of the perspective introduces an overview of the DSSC field and a number of considerations related to the transition from the triiodide/iodide-based CTM to CTMs based on alternative systems. Subsequently, the recent developments of CTM based on Cu coordination complexes are discussed, from the inorganic physical chemistry point of view, including some highlights about novel dyes associated to these CTMs. Finally, several preparation methods and applications of different types of novel carbonaceous counter electrode substrates, related to the application of the aforementioned novel CTMs, are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy