SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Benkert P.) "

Sökning: WFRF:(Benkert P.)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Benkert, P., et al. (författare)
  • Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study
  • 2022
  • Ingår i: The Lancet Neurology. - 1474-4422 .- 1474-4465. ; 21:3, s. 246-257
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Serum neurofilament light chain (sNfL) is a biomarker of neuronal damage that is used not only to monitor disease activity and response to drugs and to prognosticate disease course in people with multiple sclerosis on the group level. The absence of representative reference values to correct for physiological age-dependent increases in sNfL has limited the diagnostic use of this biomarker at an individual level. We aimed to assess the applicability of sNfL for identification of people at risk for future disease activity by establishing a reference database to derive reference values corrected for age and body-mass index (BMI). Furthermore, we used the reference database to test the suitability of sNfL as an endpoint for group-level comparison of effectiveness across disease-modifying therapies. Methods: For derivation of a reference database of sNfL values, a control group was created, comprising participants with no evidence of CNS disease taking part in four cohort studies in Europe and North America. We modelled the distribution of sNfL concentrations in function of physiological age-related increase and BMI-dependent modulation, to derive percentile and Z score values from this reference database, via a generalised additive model for location, scale, and shape. We tested the reference database in participants with multiple sclerosis in the Swiss Multiple Sclerosis Cohort (SMSC). We compared the association of sNfL Z scores with clinical and MRI characteristics recorded longitudinally to ascertain their respective disease prognostic capacity. We validated these findings in an independent sample of individuals with multiple sclerosis who were followed up in the Swedish Multiple Sclerosis registry. Findings: We obtained 10 133 blood samples from 5390 people (median samples per patient 1 [IQR 1–2] in the control group). In the control group, sNfL concentrations rose exponentially with age and at a steeper increased rate after approximately 50 years of age. We obtained 7769 samples from 1313 people (median samples per person 6·0 [IQR 3·0–8·0]). In people with multiple sclerosis from the SMSC, sNfL percentiles and Z scores indicated a gradually increased risk for future acute (eg, relapse and lesion formation) and chronic (disability worsening) disease activity. A sNfL Z score above 1·5 was associated with an increased risk of future clinical or MRI disease activity in all people with multiple sclerosis (odds ratio 3·15, 95% CI 2·35–4·23; p<0·0001) and in people considered stable with no evidence of disease activity (2·66, 1·08–6·55; p=0·034). Increased Z scores outperformed absolute raw sNfL cutoff values for diagnostic accuracy. At the group level, the longitudinal course of sNfL Z score values in people with multiple sclerosis from the SMSC decreased to those seen in the control group with use of monoclonal antibodies (ie, alemtuzumab, natalizumab, ocrelizumab, and rituximab) and, to a lesser extent, oral therapies (ie, dimethyl fumarate, fingolimod, siponimod, and teriflunomide). However, longitudinal sNfL Z scores remained elevated with platform compounds (interferons and glatiramer acetate; p<0·0001 for the interaction term between treatment category and treatment duration). Results were fully supported in the validation cohort (n=4341) from the Swedish Multiple Sclerosis registry. Interpretation: The use of sNfL percentiles and Z scores allows for identification of individual people with multiple sclerosis at risk for a detrimental disease course and suboptimal therapy response beyond clinical and MRI measures, specifically in people with disease activity-free status. Additionally, sNfL might be used as an endpoint for comparing effectiveness across drug classes in pragmatic trials. Funding: Swiss National Science Foundation, Progressive Multiple Sclerosis Alliance, Biogen, Celgene, Novartis, Roche. © 2022 Elsevier Ltd
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Manouchehrinia, A., et al. (författare)
  • Plasma neurofilament light levels are associated with risk of disability in multiple sclerosis
  • 2020
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 94:23
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveTo investigate the association between plasma neurofilament light chain (pNfL) levels and the risk of developing sustained disability worsening.MethodsConcentrations of pNfL were determined in 4,385 persons with multiple sclerosis (MS) and 1,026 randomly selected population-based sex- and age-matched controls using the highly sensitive Single Molecule Array (SimoaTM) NF-Light Advantage Kit. We assessed the impact of age-stratified pNfL levels above the 80th, 95th, and 99th percentiles among controls on the risk of Expanded Disability Status Scale (EDSS) worsening within the following year and reaching sustained EDSS scores of 3.0, 4.0, and 6.0 and conversion to secondary progressive multiple sclerosis (SPMS).ResultsThe median (interquartile range [IQR]) pNfL was 7.5 (4.1) pg/mL in controls and 11.4 (9.6) pg/mL in MS (p < 0.001). The median (IQR) duration of follow-up was 5 (5.1) years. High pNfL was associated with increased adjusted rates of EDSS worsening ranging between 1.4 (95% confidence intervals [CIs]: 1.1-1.8) and 1.7 (95% CI: 1.4-2.3). High pNfL was also associated with the risk of reaching a sustained EDSS score of 3.0, with adjusted rates ranging between 1.5 (95% CI: 1.2-1.8) and 1.55 (95% CI: 1.3-1.8) over all percentile cutoffs (all p < 0.001). Similar increases were observed for the risk of sustained EDSS score 4.0. In contrast, the risk of reaching sustained EDSS score 6.0 and conversion to SPMS was not consistently significant.ConclusionsElevated pNfL levels at early stages of MS are associated with an increased risk of reaching sustained disability worsening. Hence, pNfL may serve as a prognostic tool to assess the risk of developing permanent disability in MS.
  •  
7.
  • Meier, S, et al. (författare)
  • Serum Glial Fibrillary Acidic Protein Compared With Neurofilament Light Chain as a Biomarker for Disease Progression in Multiple Sclerosis
  • 2023
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 80:3, s. 287-297
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a lack of validated biomarkers for disability progression independent of relapse activity (PIRA) in multiple sclerosis (MS).ObjectiveTo determine how serum glial fibrillary acidic protein (sGFAP) and serum neurofilament light chain (sNfL) correlate with features of disease progression vs acute focal inflammation in MS and how they can prognosticate disease progression.Design, Setting, and ParticipantsData were acquired in the longitudinal Swiss MS cohort (SMSC; a consortium of tertiary referral hospitals) from January 1, 2012, to October 20, 2022. The SMSC is a prospective, multicenter study performed in 8 centers in Switzerland. For this nested study, participants had to meet the following inclusion criteria: cohort 1, patients with MS and either stable or worsening disability and similar baseline Expanded Disability Status Scale scores with no relapses during the entire follow-up; and cohort 2, all SMSC study patients who had initiated and continued B-cell–depleting treatment (ie, ocrelizumab or rituximab).ExposuresPatients received standard immunotherapies or were untreated.Main Outcomes and MeasuresIn cohort 1, sGFAP and sNfL levels were measured longitudinally using Simoa assays. Healthy control samples served as the reference. In cohort 2, sGFAP and sNfL levels were determined cross-sectionally.ResultsThis study included a total of 355 patients (103 [29.0%] in cohort 1: median [IQR] age, 42.1 [33.2-47.6] years; 73 female patients [70.9%]; and 252 [71.0%] in cohort 2: median [IQR] age, 44.3 [33.3-54.7] years; 156 female patients [61.9%]) and 259 healthy controls with a median [IQR] age of 44.3 [36.3-52.3] years and 177 female individuals (68.3%). sGFAP levels in controls increased as a function of age (1.5% per year; P &amp;lt; .001), were inversely correlated with BMI (−1.1% per BMI unit; P = .01), and were 14.9% higher in women than in men (P = .004). In cohort 1, patients with worsening progressive MS showed 50.9% higher sGFAP levels compared with those with stable MS after additional sNfL adjustment, whereas the 25% increase of sNfL disappeared after additional sGFAP adjustment. Higher sGFAP at baseline was associated with accelerated gray matter brain volume loss (per doubling: 0.24% per year; P &amp;lt; .001) but not white matter loss. sGFAP levels remained unchanged during disease exacerbations vs remission phases. In cohort 2, median (IQR) sGFAP z scores were higher in patients developing future confirmed disability worsening compared with those with stable disability (1.94 [0.36-2.23] vs 0.71 [−0.13 to 1.73]; P = .002); this was not significant for sNfL. However, the combined elevation of z scores of both biomarkers resulted in a 4- to 5-fold increased risk of confirmed disability worsening (hazard ratio [HR], 4.09; 95% CI, 2.04-8.18; P &amp;lt; .001) and PIRA (HR, 4.71; 95% CI, 2.05-9.77; P &amp;lt; .001).Conclusions and RelevanceResults of this cohort study suggest that sGFAP is a prognostic biomarker for future PIRA and revealed its complementary potential next to sNfL. sGFAP may serve as a useful biomarker for disease progression in MS in individual patient management and drug development.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Muller, J., et al. (författare)
  • Choroid Plexus Volume in Multiple Sclerosis vs Neuromyelitis Optica Spectrum Disorder A Retrospective, Cross-sectional Analysis
  • 2022
  • Ingår i: Neurology-Neuroimmunology & Neuroinflammation. - : Ovid Technologies (Wolters Kluwer Health). - 2332-7812. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives The choroid plexus has been shown to play a crucial role in CNS inflammation. Previous studies found larger choroid plexus in multiple sclerosis (MS) compared with healthy controls. However, it is not clear whether the choroid plexus is similarly involved in MS and in neuromyelitis optica spectrum disorder (NMOSD). Thus, the aim of this study was to compare the choroid plexus volume in MS and NMOSD. Methods In this retrospective, cross-sectional study, patients were included by convenience sampling from 4 international MS centers. The choroid plexus of the lateral ventricles was segmented fully automatically on T1-weighted MRI sequences using a deep learning algorithm (Multi-Dimensional Gated Recurrent Units). Uni- and multivariable linear models were applied to investigate associations between the choroid plexus volume, clinically meaningful disease characteristics, and MRI parameters. Results We studied 180 patients with MS and 98 patients with NMOSD. In total, 94 healthy individuals and 47 patients with migraine served as controls. The choroid plexus volume was larger in MS (median 1,690 mu L, interquartile range [IQR] 648 mu L) than in NMOSD (median 1,403 mu L, IQR 510 mu L), healthy individuals (median 1,533 mu L, IQR 570 mu L), and patients with migraine (median 1,404 mu L, IQR 524 mu L; all p < 0.001), whereas there was no difference between NMOSD, migraine, and healthy controls. This was also true when adjusted for age, sex, and the intracranial volume. In contrast to NMOSD, the choroid plexus volume in MS was associated with the number of T2-weighted lesions in a linear model adjusted for age, sex, total intracranial volume, disease duration, relapses in the year before MRI, disease course, Expanded Disability Status Scale score, disease-modifying treatment, and treatment duration (beta 4.4; 95% CI 0.78-8.1; p = 0.018). Discussion This study supports an involvement of the choroid plexus in MS in contrast to NMOSD and provides clues to better understand the respective pathogenesis.
  •  
12.
  •  
13.
  • Disanto, G., et al. (författare)
  • Serum Neurofilament Light: A Biomarker of Neuronal Damage in Multiple Sclerosis
  • 2017
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134. ; 81:6, s. 857-870
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Neurofilament light chains (NfL) are unique to neuronal cells, are shed to the cerebrospinal fluid (CSF), and are detectable at low concentrations in peripheral blood. Various diseases causing neuronal damage have resulted in elevated CSF concentrations. We explored the value of an ultrasensitive single-molecule array (Simoa) serum NfL (sNfL) assay in multiple sclerosis (MS). Methods: sNfL levels were measured in healthy controls (HC, n = 254) and two independent MS cohorts: (1) crosssectional with paired serum and CSF samples (n = 142), and (2) longitudinal with repeated serum sampling (n = 246, median follow-up = 3.1 years, interquartile range [IQR] = 2.0-4.0). We assessed their relation to concurrent clinical, imaging, and treatment parameters and to future clinical outcomes. Results: sNfL levels were higher in both MS cohorts than in HC (p < 0.001). We found a strong association between CSF NfL and sNfL (beta = 0.589, p < 0.001). Patients with either brain or spinal (43.4pg/ ml, IQR = 25.2-65.3) or both brain and spinal gadolinium-enhancing lesions (62.5pg/ml, IQR = 42.7-71.4) had higher sNfL than those without (29.6pg/ml, IQR = 20.9-41.8; beta = 1.461, p = 0.005 and beta = 1.902, p = 0.002, respectively). sNfL was independently associated with Expanded Disability Status Scale (EDSS) assessments (beta = 1.105, p < 0.001) and presence of relapses (beta = 1.430, p < 0.001). sNfL levels were lower under disease-modifying treatment (beta = 0.818, p = 0.003). Patients with sNfL levels above the 80th, 90th, 95th, 97.5th, and 99th HC-based percentiles had higher risk of relapses (97.5th percentile: incidence rate ratio = 1.94, 95% confidence interval [CI] = 1.21-3.10, p = 0.006) and EDSS worsening (97.5th percentile: OR = 2.41, 95% CI = 1.07-5.42, p = 0.034). Interpretation: These results support the value of sNfL as a sensitive and clinically meaningful blood biomarker to monitor tissue damage and the effects of therapies in MS.
  •  
14.
  • Fissolo, N., et al. (författare)
  • Serum biomarker levels predict disability progression in patients with primary progressive multiple sclerosis
  • 2024
  • Ingår i: Journal of Neurology Neurosurgery and Psychiatry. - 0022-3050. ; 95:5, s. 410-418
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundWe aimed to investigate the potential of serum biomarker levels to predict disability progression in a multicentric real-world cohort of patients with primary progressive multiple sclerosis (PPMS).MethodsA total of 141 patients with PPMS from 18 European MS centres were included. Disability progression was investigated using change in Expanded Disability Status Scale (EDSS) score over three time intervals: baseline to 2 years, 6 years and to the last follow-up. Serum levels of neurofilament light chain (sNfL), glial fibrillar acidic protein (sGFAP) and chitinase 3-like 1 (sCHI3L1) were measured using single-molecule array assays at baseline. Correlations between biomarker levels, and between biomarkers and age were quantified using Spearman's r. Univariable and multivariable linear models were performed to assess associations between biomarker levels and EDSS change over the different time periods.ResultsMedian (IQR) age of patients was 52.9 (46.4-58.5) years, and 58 (41.1%) were men. Median follow-up time was 9.1 (7.0-12.6) years. Only 8 (5.7%) patients received treatment during follow-up. sNfL and sGFAP levels were moderately correlated (r=0.43) and both weakly correlated with sCHI3L1 levels (r=0.19 and r=0.17, respectively). In multivariable analyses, levels of the three biomarkers were associated with EDSS changes across all time periods. However, when analysis was restricted to non-inflammatory patients according to clinical and radiological parameters (n=64), only sCHI3L1 levels remained associated with future EDSS change.ConclusionsLevels of sNfL, sGFAP and sCHI3L1 are prognostic biomarkers associated with disability progression in patients with PPMS, being CHI3L1 findings less dependent on the inflammatory component associated with disease progression.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Ramanujam, Ryan, et al. (författare)
  • Accurate classification of secondary progression in multiple sclerosis using a decision tree
  • 2020
  • Ingår i: Multiple Sclerosis Journal. - : SAGE Publications Ltd. - 1352-4585 .- 1477-0970.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The absence of reliable imaging or biological markers of phenotype transition in multiple sclerosis (MS) makes assignment of current phenotype status difficult. Objective: The authors sought to determine whether clinical information can be used to accurately assign current disease phenotypes. Methods: Data from the clinical visits of 14,387 MS patients in Sweden were collected. Classifying algorithms based on several demographic and clinical factors were examined. Results obtained from the best classifier when predicting neurologist recorded disease classification were replicated in an independent cohort from British Columbia and were compared to a previously published algorithm and clinical judgment of three neurologists. Results: A decision tree (the classifier) containing only most recently available expanded disability scale status score and age obtained 89.3% (95% confidence intervals (CIs): 88.8–89.8) classification accuracy, defined as concordance with the latest reported status. Validation in the independent cohort resulted in 82.0% (95% CI: 81.0–83.1) accuracy. A previously published classification algorithm with slight modifications achieved 77.8% (95% CI: 77.1–78.4) accuracy. With complete patient history of 100 patients, three neurologists obtained 84.3% accuracy compared with 85% for the classifier using the same data. Conclusion: The classifier can be used to standardize definitions of disease phenotype across different cohorts. Clinically, this model could assist neurologists by providing additional information.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy