SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Berlind A. A.) "

Sökning: WFRF:(Berlind A. A.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdellaoui, G., et al. (författare)
  • Meteor studies in the framework of the JEM-EUSO program
  • 2017
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 143, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.
  •  
2.
  • Blanton, Michael R., et al. (författare)
  • Sloan Digital Sky Survey IV : Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
  • 2017
  • Ingår i: Astronomical Journal. - : IOP Publishing Ltd. - 0004-6256 .- 1538-3881. ; 154:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and. high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z similar to 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z similar to 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs. and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the. Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.
  •  
3.
  • Osborn, H. P., et al. (författare)
  • The PDS 110 observing campaign - photometric and spectroscopic observations reveal eclipses are aperiodic
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 485:2, s. 1614-1625
  • Tidskriftsartikel (refereegranskat)abstract
    • PDS 110 is a young disc-hosting star in the Orion OB1A association. Two dimming events of similar depth and duration were seen in 2008 (WASP) and 2011 (KELT), consistent with an object in a closed periodic orbit. In this paper, we present data from a ground-based observing campaign designed to measure the star both photometrically and spectroscopically during the time of predicted eclipse in 2017 September. Despite high-quality photometry, the predicted eclipse did not occur, although coherent structure is present suggesting variable amounts of stellar flux or dust obscuration. We also searched for radial velocity (RV) oscillations caused by any hypothetical companion and can rule out close binaries to 0.1Ms. Asearch of Sonneberg plate archive data also enabled us to extend the photometric baseline of this star back more than 50 yr, and similarly does not re-detect any deep eclipses. Taken together, they suggest that the eclipses seen in WASP and KELT photometry were due to aperiodic events. It would seem that PDS 110 undergoes stochastic dimmings that are shallower and of shorter duration than those of UX Ori variables, but may have a similar mechanism.
  •  
4.
  • Subjak, Jan, et al. (författare)
  • TOI-503: The First Known Brown-dwarf Am-star Binary from the TESS Mission
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 159:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of an intermediate-mass transiting brown dwarf (BD), TOI-503b, from the TESS mission. TOI-503b is the first BD discovered by TESS, and it has circular orbit around a metallic-line A-type star with a period of P.=.3.6772.+/-.0.0001 days. The light curve from TESS indicates that TOI-503b transits its host star in a grazing manner, which limits the precision with which we measure the BD's radius ( = R 1.34+ R b 0.150.26 J). We obtained highresolution spectroscopic observations with the FIES, Ondr.ejov, PARAS, Tautenburg, and TRES spectrographs, and measured the mass of TOI-503b to be Mb.=.53.7.+/-.1.2 MJ. The host star has a mass of Ma.=.1.80.+/-.0.06Me, a radius of Ra.=.1.70.+/-.0.05Re, an effective temperature of Teff.=.7650.+/-.160 K, and a relatively high metallicity of 0.61.+/-.0.07 dex. We used stellar isochrones to derive the age of the system to be 180 Myr, which places its age between that of RIK 72b (a 10 Myr old BD in the Upper Scorpius stellar association) and AD 3116b (a 600 Myr old BD in the Praesepe cluster). Given the difficulty in measuring the tidal interactions between BDs and their host stars, we cannot precisely say whether this BD formed in situ or has had its orbit circularized by its host star over the relatively short age of the system. Instead, we offer an examination of plausible values for the tidal quality factor for the star and BD. TOI-503b joins a growing number of known short-period, intermediate-mass BDs orbiting mainsequence stars, and is the second such BD known to transit an A star, after HATS-70b. With the growth in the population in this regime, the driest region in the BD desert (35-55MJ sin i) is reforesting.
  •  
5.
  • Thompson, Todd A., et al. (författare)
  • A noninteracting low-mass black hole–giant star binary system
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 366:6465, s. 637-640
  • Tidskriftsartikel (refereegranskat)abstract
    • Black hole binary systems with companion stars are typically found via their x-ray emission, generated by interaction and accretion. Noninteracting binaries are expected to be plentiful in the Galaxy but must be observed using other methods. We combine radial velocity and photometric variability data to show that the bright, rapidly rotating giant star 2MASS J05215658+4359220 is in a binary system with a massive unseen companion. The system has an orbital period of ~83 days and near-zero eccentricity. The photometric variability period of the giant is consistent with the orbital period, indicating star spots and tidal synchronization. Constraints on the giant’s mass and radius imply that the unseen companion is 3:3þ - 2 0 : : 8 7 solar masses, indicating that it is a noninteracting low-mass black hole or an unexpectedly massive neutron star.
  •  
6.
  • Marion, G. H., et al. (författare)
  • TYPE IIb SUPERNOVA SN 2011dh : SPECTRA AND PHOTOMETRY FROM THE ULTRAVIOLET TO THE NEAR-INFRARED
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 781:2, s. 69-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report spectroscopic and photometric observations of the Type IIb SN 201 ldh obtained between 4 and 34 days after the estimated date of explosion (May 31.5 UT). The data cover a wide wavelength range from 2000 angstrom in the ultraviolet (UV) to 2.4 mu m in the near-infrared (NIR). Optical spectra provide line profiles and velocity measurements of H I, He I, Call, and Fe It that trace the composition and kinematics of the supernova (SN). NIR spectra show that helium is present in the atmosphere as early as 11 days after the explosion. A UV spectrum obtained with the Space Telescope Imaging Spectrograph reveals that the UV flux for SN 2011dh is low compared to other SN IIb. Modeling the spectrum with SYNOW suggests that the UV deficit is due to line blanketing from TinH and Co II. The HI and He I velocities in SN 2011dh are separated by about 4000 km s(-1) at all phases. A velocity gap is consistent with models for a preexplosion structure in which a hydrogen-rich shell surrounds the progenitor. We estimate that the H shell of SN 2011dh is approximate to 8 times less massive than the shell of SN 1993J and approximate to 3 times more massive than the shell of SN 2008ax. Light curves (LCs) for 12 passbands are presented: UVW2, UVM2, UVW1, U, u', B, V, r', i', J, H, and Ks. In the B band, SN 2011dh reached peak brightness of 13.17 mag at 20.0 +/- 0.5 after the explosion. The maximum bolometric luminosity of 1.8 +/- 0.2 x 10(42) erg s(-1) occurred approximate to 22 days after the explosion. NIR emission provides more than 30% of the total bolometric flux at the beginning of our observations, and the NIR contribution increases to nearly 50% of the total by day 34. The UV produces 16% of the total flux on day 4, 5% on day 9, and 1% on day 34. We compare the bolometric LCs of SN 2011dh, SN 2008ax, and SN 1993J. The LC are very different for the first 12 days after the explosions, but all three SN IIb display similar peak luminosities, times of peak, decline rates, and colors after maximum. This suggests that the progenitors of these SN IIb may have had similar compositions and masses, but they exploded inside hydrogen shells that have a wide range of masses. SN 2011dh was well observed, and a likely progenitor star has been identified in preexplosion images. The detailed observations presented here will help evaluate theoretical models for this SN and lead to a better understanding of SN IIb.
  •  
7.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy