SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Biffin Ed) "

Sökning: WFRF:(Biffin Ed)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Christmas, Matthew, et al. (författare)
  • Measuring genome-wide genetic variation to reassess subspecies classifications in Dodonaea viscosa (Sapindaceae)
  • 2018
  • Ingår i: Australian Journal of Botany. - : CSIRO PUBLISHING. - 0067-1924 .- 1444-9862. ; 66:4, s. 287-297
  • Tidskriftsartikel (refereegranskat)abstract
    • Subspecies are traditionally defined on the basis of geographic discontinuities in phenotypic traits, and their circumscription is useful to distinguish morphologically differentiated populations. However, the robustness of morphology-based subspecies classifications in the genomics era is coming under increasing scrutiny, and phylogenies inferred from molecular data may not match with morphological approaches. The division of the shrub Dodonaea viscosa into seven subspecies within Australia has been based mainly on variation in leaf shape, which is a notably variable phenotypic character in this species. So as to assess the alignment between genetic variation and subspecies assignment, we genotyped 67 D. viscosa plants, including representatives from each of the seven subspecies, for 941 single nucleotide polymorphisms. Weused network-and Bayesian-based methods to assess genetic relatedness between sampled individuals. Structure analysis identified two genetic clusters, with a further substructure being identified within one of the clusters. Genetic clusters partially aligned with subspecies classifications, particularly for the three most morphologically distinct subspecies (ssp. mucronata, ssp. viscosa and ssp. burmanniana). Subspecies inhabiting the arid zone (ssp. mucronata and ssp. angustissima) exhibited the most distinct genetic clustering. For subspecies inhabiting more temperate regions of its range (ssp. angustifolia, ssp. cuneata and ssp. spatulata), genetic groups did not correspond well with subspecies classifications, but rather were better explained by the geographic origin of individuals. We suggest that the current subspecific classification of the hopbush does not accurately reflect the evolutionary history of this species, and recommend that phenotypic variation be reassessed in light of the genetic structure we describe here. The roles of environmental change, selection and geographic isolation are discussed in an attempt to explain the contemporary distribution of genetic variation in D. viscosa in Australia.
  •  
2.
  • Leebens-Mack, James H., et al. (författare)
  • One thousand plant transcriptomes and the phylogenomics of green plants
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 574:7780, s. 679-
  • Tidskriftsartikel (refereegranskat)abstract
    • Green plants (Viridiplantae) include around 450,000-500,000 species(1,2) of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy