SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Billker Oliver) "

Sökning: WFRF:(Billker Oliver)

  • Resultat 1-25 av 91
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lönnberg, Tapio, et al. (författare)
  • Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria
  • 2017
  • Ingår i: Science immunology. - : American Association for the Advancement of Science (AAAS). - 2470-9468. ; 2:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Differentiation of naïve CD4(+) T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates.
  •  
2.
  • Adderley, Jack D., et al. (författare)
  • Analysis of erythrocyte signalling pathways during Plasmodium falciparum infection identifies targets for host-directed antimalarial intervention
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracellular pathogens mobilize host signaling pathways of their host cell to promote their own survival. Evidence is emerging that signal transduction elements are activated in a-nucleated erythrocytes in response to infection with malaria parasites, but the extent of this phenomenon remains unknown. Here, we fill this knowledge gap through a comprehensive and dynamic assessment of host erythrocyte signaling during infection with Plasmodium falciparum. We used arrays of 878 antibodies directed against human signaling proteins to interrogate the activation status of host erythrocyte phospho-signaling pathways at three blood stages of parasite asexual development. This analysis reveals a dynamic modulation of many host signalling proteins across parasite development. Here we focus on the hepatocyte growth factor receptor (c-MET) and the MAP kinase pathway component B-Raf, providing a proof of concept that human signaling kinases identified as activated by malaria infection represent attractive targets for antimalarial intervention.
  •  
3.
  • Akkaya, Munir, et al. (författare)
  • A single-nucleotide polymorphism in a Plasmodium berghei ApiAP2 transcription factor alters the development of host immunity
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 6:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The acquisition of malaria immunity is both remarkably slow and unpredictable. At present, we know little about the malaria parasite genes that influence the host's ability to mount a protective immune response. Here, we show that a single-nucleotide polymorphism (SNP) resulting in a single amino acid change (S to F) in an ApiAP2 transcription factor in the rodent malaria parasite Plasmodium berghei (Pb) NK65 allowed infected mice to mount a T helper cell 1 (T(H)1)-type immune response that controlled subsequent infections. As compared to PbNK65(S), PbNK65(F) parasites differentially expressed 46 genes, most of which are predicted to play roles in immune evasion. PbNK65(F) infections resulted in an early interferon-gamma response and a later expansion of germinal centers, resulting in high levels of infected red blood cell-specific T(H)1-type immunoglobulin G2b (IgG2b) and IgG2c antibodies. Thus, the Pb ApiAP2 transcription factor functions as a critical parasite virulence factor in malaria infections.
  •  
4.
  • Akkaya, Munir, et al. (författare)
  • Testing the impact of a single nucleotide polymorphism in a Plasmodium berghei ApiAP2 transcription factor on experimental cerebral malaria in mice
  • 2020
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral malaria (CM) is the deadliest form of severe Plasmodium infections. Currently, we have limited understanding of the mechanisms by which Plasmodium parasites induce CM. The mouse model of CM, experimental CM (ECM), induced by infection with the rodent parasite, Plasmodium berghei ANKA (PbANKA) has been extensively used to study the pathophysiology of CM. Recent genomic analyses revealed that the coding regions of PbANKA and the closely related Plasmodium berghei NK65 (PbNK65), that does not cause ECM, differ in only 21 single nucleotide polymorphysims (SNPs). Thus, the SNP-containing genes might contribute to the pathogenesis of ECM. Although the majority of these SNPs are located in genes of unknown function, one SNP is located in the DNA binding site of a member of the Plasmodium ApiAP2 transcription factor family, that we recently showed functions as a virulence factor alternating the host's immune response to the parasite. Here, we investigated the impact of this SNP on the development of ECM. Our results using CRISPR-Cas9 engineered parasites indicate that despite its immune modulatory function, the SNP is neither necessary nor sufficient to induce ECM and thus cannot account for parasite strain-specific differences in ECM phenotypes.
  •  
5.
  • Alavi, Y., et al. (författare)
  • The dynamics of interactions between Plasmodium and the mosquito : a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti
  • 2003
  • Ingår i: International Journal of Parasitology. - : Elsevier. - 0020-7519 .- 1879-0135. ; 33:9, s. 933-943
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of parasite–mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500–100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite–mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.
  •  
6.
  • Alkaitis, Matthew S., et al. (författare)
  • Decreased Rate of Plasma Arginine Appearance in Murine Malaria May Explain Hypoargininemia in Children With Cerebral Malaria
  • 2016
  • Ingår i: Journal of Infectious Diseases. - : Oxford University Press. - 0022-1899 .- 1537-6613. ; 214:12, s. 1840-1849
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:  Plasmodium infection depletes arginine, the substrate for nitric oxide synthesis, and impairs endothelium-dependent vasodilation. Increased conversion of arginine to ornithine by parasites or host arginase is a proposed mechanism of arginine depletion.METHODS:  We used high-performance liquid chromatography to measure plasma arginine, ornithine, and citrulline levels in Malawian children with cerebral malaria and in mice infected with Plasmodium berghei ANKA with or without the arginase gene. Heavy isotope-labeled tracers measured by quadrupole time-of-flight liquid chromatography-mass spectrometry were used to quantify the in vivo rate of appearance and interconversion of plasma arginine, ornithine, and citrulline in infected mice.RESULTS:  Children with cerebral malaria and P. berghei-infected mice demonstrated depletion of plasma arginine, ornithine, and citrulline. Knock out of Plasmodium arginase did not alter arginine depletion in infected mice. Metabolic tracer analysis demonstrated that plasma arginase flux was unchanged by P. berghei infection. Instead, infected mice exhibited decreased rates of plasma arginine, ornithine, and citrulline appearance and decreased conversion of plasma citrulline to arginine. Notably, plasma arginine use by nitric oxide synthase was decreased in infected mice.CONCLUSIONS:  Simultaneous arginine and ornithine depletion in malaria parasite-infected children cannot be fully explained by plasma arginase activity. Our mouse model studies suggest that plasma arginine depletion is driven primarily by a decreased rate of appearance.
  •  
7.
  • Arai, M, et al. (författare)
  • Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito
  • 2001
  • Ingår i: Molecular and biochemical parasitology (Print). - : Elsevier. - 0166-6851 .- 1872-9428. ; 116:1, s. 17-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Gametogenesis of Plasmodium in vitro can be induced by the combined stimulus of a 5 degrees C fall in temperature and the presence of xanthurenic acid (XA). In-vitro experiments showed that P. gallinaceum (EC(50)=80 nM) is much more sensitive to XA than P. berghei (9 microM), P. yoelii (8 microM), and P. falciparum (2 microM). However, in the mosquito vector, we do not know whether the temperature shift and XA are the only gametocyte-activating factors (GAF), nor do we know with certainty the true source(s) of XA in the mosquito blood meal. Previous studies indicate that XA is the only source of GAF in the mosquito. By defining, and then contrasting, the ability of an XA-deficient mutant of Aedes aegypti, with the wild-type mosquito to support exflagellation and ookinete formation in vivo, we determined the roles of parasite-, mosquito- and host blood-derived GAF in the regulation of gametogenesis of P. gallinaceum. Removal of both host and vector sources of GAF totally inhibited both exflagellation and ookinete production, whilst the lack of either single source resulted in only a partial reduction of exflagellation and ookinete formation in the mosquito gut. Both sources can be effectively replaced/substituted by synthetic XA. This suggests (1) both mosquito- and vertebrate-derived factors act as GAF in the mosquito gut in vivo; (2) the parasite itself is unable to produce any significant GAF activity. Studies are underway to determine whether vertebrate-derived GAF is XA. These data may form the basis of further studies of the development of new methods of interrupting malarial transmission.
  •  
8.
  • Arai, Meiji, et al. (författare)
  • Isonicotinic acid hydrazide : an anti-tuberculosis drug inhibits malarial transmission in the mosquito gut
  • 2004
  • Ingår i: Experimental parasitology. - : Elsevier BV. - 0014-4894 .- 1090-2449. ; 106:1-2, s. 30-36
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the transmission-blocking effect of isonicotinic acid hydrazide (INH), a widely used anti-tuberculosis drug, against Plasmodium gallinaceum and Plasmodium berghei. INH-treatment of infected animals did not inhibit parasite development in the blood of the vertebrate host, but did inhibit exflagellation, ookinete formation, and oocyst development in the mosquito. Oocyst development was inhibited in a dose-dependent manner. The ED(50) in the P. gallinaceum/chicken/Aedes aegypti model and P. berghei/mouse/Anopheles stephensi model was 72 and 109 mg/kg, respectively. In marked contrast, in vitro exflagellation and ookinete development were not directly affected by physiological concentrations of INH. We suggest that INH exerts its inhibitory effects on the mosquito stages of the malaria parasite by an indirect, and at present undefined mechanism. Further elucidation of the mechanism how INH inhibits parasite development specifically on mosquito stages may allow us to identify new targets for malaria control strategy.
  •  
9.
  • Bauza, Karolis, et al. (författare)
  • Efficacy of a Plasmodium vivax Malaria Vaccine Using ChAd63 and Modified Vaccinia Ankara Expressing Thrombospondin-Related Anonymous Protein as Assessed with Transgenic Plasmodium berghei Parasites
  • 2014
  • Ingår i: Infection and Immunity. - : American Society for Microbiology. - 0019-9567 .- 1098-5522. ; 82:3, s. 1277-1286
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmodium vivax is the world's most widely distributed malaria parasite and a potential cause of morbidity and mortality for approximately 2.85 billion people living mainly in Southeast Asia and Latin America. Despite this dramatic burden, very few vaccines have been assessed in humans. The clinically relevant vectors modified vaccinia virus Ankara (MVA) and the chimpanzee adenovirus ChAd63 are promising delivery systems for malaria vaccines due to their safety profiles and proven ability to induce protective immune responses against Plasmodium falciparum thrombospondin-related anonymous protein (TRAP) in clinical trials. Here, we describe the development of new recombinant ChAd63 and MVA vectors expressing P. vivax TRAP (PvTRAP) and show their ability to induce high antibody titers and T cell responses in mice. In addition, we report a novel way of assessing the efficacy of new candidate vaccines against P. vivax using a fully infectious transgenic Plasmodium berghei parasite expressing P. vivax TRAP to allow studies of vaccine efficacy and protective mechanisms in rodents. Using this model, we found that both CD8+ T cells and antibodies mediated protection against malaria using virus-vectored vaccines. Our data indicate that ChAd63 and MVA expressing PvTRAP are good preerythrocytic-stage vaccine candidates with potential for future clinical application.
  •  
10.
  • Berger, Cedric N, et al. (författare)
  • Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC)
  • 2004
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 52:4, s. 963-983
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the molecular bases underlying the virulence of diffusely adhering Escherichia coli (DAEC) harbouring the Afa/Dr family of adhesins. These adhesins recognize as receptors the GPI-anchored proteins CD55 (decay-accelerating factor, DAF) and CD66e (carcinoembryonic antigen, CEA). CD66e is a member of the CEA-related cell adhesion molecules (CEACAM) family, comprising seven members. We analysed the interactions of Afa/Dr DAEC with the CEACAMs using CEACAM-expressing CHO and HeLa cells. The results demonstrate that only E. coli expressing a subfamily of Afa/Dr adhesins, named here Afa/Dr-I, including Dr, F1845 and AfaE-III adhesins, bound onto CHO cells expressing CEACAM1, CEA or CEACAM6. Whereas all the Afa/Dr adhesins elicit recruitment of CD55 around adhering bacteria, only the Afa/Dr-I subfamily elicits the recruitment of CEACAM1, CEA and CEACAM6. In addition, although CEACAM3 is not recognized as a receptor by the subfamily of Afa/Dr adhesins, it is recruited around bacteria in HeLa cells. The recruited CEACAM1, CEA and CEACAM6 around adhering bacteria resist totally or in part a detergent extraction, whereas the recruited CEACAM3 does not. Finally, the results show that recognition of CEA and CEACAM6, but not CEACAM1, is accompanied by tight attachment to bacteria of cell surface microvilli-like extensions, which are elongated. Moreover, recognition of CEA is accompanied by an activation of the Rho GTPase Cdc42 and by a phosphorylation of ERM, which in turn elicit the observed cell surface microvilli-like extensions.
  •  
11.
  • Billker, Oliver, et al. (författare)
  • Azadirachtin disrupts formation of organised microtubule arrays during microgametogenesis of Plasmodium berghei
  • 2002
  • Ingår i: Journal of Eukaryotic Microbiology. - : Wiley. - 1066-5234 .- 1550-7408. ; 49:6, s. 489-497
  • Tidskriftsartikel (refereegranskat)abstract
    • Transmission of malaria parasites from vertebrate blood to the mosquito vector depends critically on the differentiation of the gametocytes into gametes. This occurs in response to environmental stimuli encountered by the parasite in the mosquito bloodmeal. Male gametogenesis involves three rounds of DNA replication and endomitosis, and the assembly de novo of 8 motile axonemes. Azadirachtin, a plant limnoid and insecticide with an unkown mode of action, specifically inhibits the release of motile gametes from activated microgametocytes but does not inhibit growth and replication of a sexual blood stages. We have combined confocal laser scanning microscopy and transmission electron microscopy to examine the effect of azadirachtin on the complex reorganisation of the microtubule cytoskeleton during gametogenesis in Plasmodium berghei. Neither the replication of the genome nor the ability of tubulin monomers to assemble into microtubules upon gametocyte activation were prevented by azadirachtin. However, the drug interfered with the formation of mitotic spindles and with the assembly of microtubules into typical axonemes. Our observations suggest that azadarachtin specifically disrupts the patterning of microtubules into more complex structures, such as mitotic spindles and axonemes.
  •  
12.
  • Billker, Oliver, et al. (författare)
  • Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite
  • 2004
  • Ingår i: Cell. - : Elsevier. - 0092-8674 .- 1097-4172. ; 117:4, s. 503-514
  • Tidskriftsartikel (refereegranskat)abstract
    • Transmission of malaria parasites to mosquitoes is initiated by the obligatory sexual reproduction of the parasite within the mosquito bloodmeal. Differentiation of specialized transmission stages, the gametocytes, into male and female gametes is induced by a small mosquito molecule, xanthurenic acid (XA). Using a Plasmodium berghei strain expressing a bioluminescent calcium sensor, we show that XA triggers a rapid rise in cytosolic calcium specifically in gametocytes that is essential for their differentiation into gametes. A member of a family of plant-like calcium dependent protein kinases, CDPK4, is identified as the molecular switch that translates the XA-induced calcium signal into a cellular response by regulating cell cycle progression in the male gametocyte. CDPK4 is shown to be essential for the sexual reproduction and mosquito transmission of P. berghei. This study reveals an unexpected function for a plant-like signaling pathway in cell cycle regulation and life cycle progression of a malaria parasite.
  •  
13.
  • Billker, Oliver, et al. (författare)
  • Calcium Builds Strong Host-Parasite Interactions
  • 2015
  • Ingår i: Cell Host and Microbe. - : Elsevier. - 1931-3128 .- 1934-6069. ; 18:1, s. 9-10
  • Forskningsöversikt (refereegranskat)abstract
    • Apicomplexan parasite invasion of host cells is a multistep process, requiring coordinated events. In this issue of Cell Host & Microbe, Paul et al. (2015) and Philip and Waters (2015) leverage experimental genetics to show that the calcium-regulated protein phosphatase, calcinuerin, regulates invasion in multiple parasite species.
  •  
14.
  • Billker, Oliver, et al. (författare)
  • Calcium-dependent signaling and kinases in apicomplexan parasites
  • 2009
  • Ingår i: Cell Host and Microbe. - : Elsevier BV. - 1931-3128 .- 1934-6069. ; 5:6, s. 612-622
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium controls many critical events in the complex life cycles of apicomplexan parasites including protein secretion, motility, and development. Calcium levels are normally tightly regulated and rapid release of calcium into the cytosol activates a family of calcium-dependent protein kinases (CDPKs), which are normally characteristic of plants. CDPKs present in apicomplexans have acquired a number of unique domain structures likely reflecting their diverse functions. Calcium regulation in parasites is closely linked to signaling by cyclic nucleotides and their associated kinases. This Review summarizes the pivotal roles that calcium- and cyclic nucleotide-dependent kinases play in unique aspects of parasite biology.
  •  
15.
  • Billker, Oliver (författare)
  • Cracking Ali Baba's code
  • 2017
  • Ingår i: eLIFE. - : eLife Sciences Publications. - 2050-084X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • A protein called P36 holds the key to how different species of malaria parasite invade liver cells.
  •  
16.
  • Billker, Oliver (författare)
  • CRISPRing the elephant in the room
  • 2018
  • Ingår i: Cell Host and Microbe. - : Elsevier. - 1931-3128 .- 1934-6069. ; 24:6, s. 754-755
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The importance of guanylyl-cyclases (GCs) in apicomplexa has remained elusive due to the large size of the genes. Two recent studies, including Brown and Sibley, 2018 in this issue of Cell Host & Microbe, make elegant use of genome editing with CRISPR-Cas9 to characterize roles of GCs in Toxoplasma and Plasmodium.
  •  
17.
  • Billker, Oliver, et al. (författare)
  • Determination of mosquito bloodmeal pH in situ by ion-selective microelectrode measurement : implications for the regulation of malarial gametogenesis
  • 2000
  • Ingår i: Parasitology. - : Cambridge University Press (CUP). - 0031-1820 .- 1469-8161. ; 120, s. 547-551
  • Tidskriftsartikel (refereegranskat)abstract
    • Malarial gametocytes circulate in the peripheral blood of the vertebrate host as developmentally arrested intra-erythrocytic cells, which only resume development into gametes when ingested into the bloodmeal of the female mosquito vector. The ensuing development encompasses sexual reproduction and mediates parasite transmission to the insect. In vitro the induction of gametogenesis requires a drop in temperature and either a pH increase from physiological blood pH (ca pH 7.4) to about pH 8.0, or the presence of a gametocyte-activating factor recently identified as xanthurenic acid (XA). However, it is unclear whether either the pH increase or XA act as natural triggers in the mosquito bloodmeal. We here use pH-sensitive microelectrodes to determine bloodmeal pH in intact mosquitoes. Measurements taken in the first 30 min after ingestion, when malarial gametogenesis is induced in vivo, revealed small pH increases from 7.40 (mouse blood) to 7.52 in Aedes aegypti and to 7.58 in Anophĕles stephensi. However, bloodmeal pH was clearly suboptimal if compared to values required to induce gametogenesis in vitro. Xanthurenic acid is shown to extend the pH-range of exflagellation in vitro in a dose-dependent manner to values that we have observed in the bloodmeal, suggesting that in vivo malarial gametogenesis could be further regulated by both these factors.
  •  
18.
  • Billker, Oliver, et al. (författare)
  • Distinct mechanisms of internalization of Neisseria gonorrhoeae by members of the CEACAM receptor family involving Rac1- and Cdc42-dependent and -independent pathways
  • 2002
  • Ingår i: EMBO Journal. - : European Molecular Biology Organization. - 0261-4189 .- 1460-2075. ; 21:4, s. 560-571
  • Tidskriftsartikel (refereegranskat)abstract
    • Opa adhesins of pathogenic Neisseria species target four members of the human carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) family. CEACAM receptors mediate opsonization-independent phagocytosis of Neisseria gonorrhoeae by human granulocytes and each receptor individually can mediate gonococcal invasion of epithelial cells. We show here that gonococcal internalization occurs by distinct mechanisms depending on the CEACAM receptor expressed. For the invasion of epithelial cell lines via CEACAM1 and CEACAM6, a pathogen-directed reorganization of the actin cytoskeleton is not required. In marked contrast, ligation of CEACAM3 triggers a dramatic but localized reorganization of the host cell surface leading to highly efficient engulfment of bacteria in a process regulated by the small GTPases Rac1 and Cdc42, but not Rho. Two tyrosine residues of a cytoplasmic immune receptor tyrosine-based activating motif of CEACAM3 are essential for the induction of phagocytic actin structures and subsequent gonococcal internalization. The granulocyte-specific CEACAM3 receptor has properties of a single chain phagocytic receptor and may thus contribute to innate immunity by the elimination of Neisseria and other CEACAM-binding pathogens that colonize human mucosal surfaces.
  •  
19.
  • Billker, Oliver, et al. (författare)
  • Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito
  • 1998
  • Ingår i: Nature. - : Macmillan Publishers Ltd.. - 0028-0836 .- 1476-4687. ; 392:6673, s. 289-292
  • Tidskriftsartikel (refereegranskat)abstract
    • Malaria is transmitted from vertebrate host to mosquito vector by mature sexual blood-living stages called gametocytes. Within seconds of ingestion into the mosquito bloodmeal, gametocytes undergo gametogenesis. Induction requires the simultaneous exposure to at least two stimuli in vitro: a drop in bloodmeal temperature to 5 degrees C below that of the vertebrate host, and a rise in pH from 7.4 to 8.0-8.2. In vivo the mosquito bloodmeal has a pH of between 7.5 and 7.6. It is thought that in vivo the second inducer is an unknown mosquito-derived gametocyte-activating factor. Here we show that this factor is xanthurenic acid. We also show that low concentrations of xanthurenic acid can act together with pH to induce gametogenesis in vitro. Structurally related compounds are at least ninefold less effective at inducing gametogenesis in vitro. In Drosophila mutants with lesions in the kynurenine pathway of tryptophan metabolism (of which xanthurenic acid is a side product), no alternative active compound was detected in crude insect homogenates. These data could form the basis of the rational development of new methods of interrupting the transmission of malaria using drugs or new refractory mosquito genotypes to block parasite gametogenesis.
  •  
20.
  • Billker, Oliver, et al. (författare)
  • The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro
  • 1997
  • Ingår i: Parasitology. - : Cambridge University Press. - 0031-1820 .- 1469-8161. ; 115, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Developmentally arrested malarial gametocytes undergo gamete formation in the mosquito midgut immediately after ingestion of the infected bloodmeal. In the rodent malaria parasite Plasmodium berghei male gametogenesis (exflagellation) can be induced in vitro by a temperature decrease (from 39 degrees C in the vertebrate host to 20 degrees C) and a concomitant pH increase (from 7.3 in mouse blood to 8.0). We report the presence of additional Gametocyte Activating Factor(s) (GAF) present in Anopheles stephensi tissue extracts, which induce both male and female gametogenesis at the otherwise nonpermissive pH of 7.3 in vitro but are unable to overcome the low temperature requirement. All constituent cellular events of microgametogeneis studied here are induced by the same triggers in vitro. A temperature decrease is also required for exflagellation in the mosquito midgut. The possible role of GAF as a second obligatory natural trigger of gametogenesis is discussed.
  •  
21.
  •  
22.
  • Brochet, Mathieu, et al. (författare)
  • Calcium signalling in malaria parasites
  • 2016
  • Ingår i: Molecular Microbiology. - : John Wiley & Sons. - 0950-382X .- 1365-2958. ; 100:3, s. 397-408
  • Tidskriftsartikel (refereegranskat)abstract
    • Ca2+ is a ubiquitous intracellular messenger in malaria parasites with important functions in asexual blood stages responsible for malaria symptoms, the preceding liver‐stage infection and transmission through the mosquito. Intracellular messengers amplify signals by binding to effector molecules that trigger physiological changes. The characterisation of some Ca2+ effector proteins has begun to provide insights into the vast range of biological processes controlled by Ca2+ signalling in malaria parasites, including host cell egress and invasion, protein secretion, motility and cell cycle regulation. Despite the importance of Ca2+ signalling during the life cycle of malaria parasites, little is known about Ca2+ homeostasis. Recent findings highlighted that upstream of stage‐specific Ca2+ effectors is a conserved interplay between second messengers to control critical intracellular Ca2+ signals throughout the life cycle. The identification of the molecular mechanisms integrating stage‐transcending mechanisms of Ca2+ homeostasis in a network of stage‐specific regulator and effector pathways now represents a major challenge for a meaningful understanding of Ca2+ signalling in malaria parasites.
  •  
23.
  • Brochet, Mathieu, et al. (författare)
  • Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca²⁺ signals at key decision points in the life cycle of malaria parasites
  • 2014
  • Ingår i: PLoS biology. - : Public Library of Science. - 1544-9173 .- 1545-7885. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Many critical events in the Plasmodium life cycle rely on the controlled release of Ca²⁺ from intracellular stores to activate stage-specific Ca²⁺-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP)-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca²⁺ required for gliding motility. We find that the same PKG-dependent pathway operates upstream of the Ca²⁺ signals that mediate activation of P. berghei gametocytes in the mosquito and egress of Plasmodium falciparum merozoites from infected human erythrocytes. Perturbations of PKG signalling in gliding ookinetes have a marked impact on the phosphoproteome, with a significant enrichment of in vivo regulated sites in multiple pathways including vesicular trafficking and phosphoinositide metabolism. A global analysis of cellular phospholipids demonstrates that in gliding ookinetes PKG controls phosphoinositide biosynthesis, possibly through the subcellular localisation or activity of lipid kinases. Similarly, phosphoinositide metabolism links PKG to egress of P. falciparum merozoites, where inhibition of PKG blocks hydrolysis of phosphatidylinostitol (4,5)-bisphosphate. In the face of an increasing complexity of signalling through multiple Ca²⁺ effectors, PKG emerges as a unifying factor to control multiple cellular Ca²⁺ signals essential for malaria parasite development and transmission.
  •  
24.
  • Brugat, Thibaut, et al. (författare)
  • Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection
  • 2017
  • Ingår i: Nature Microbiology. - : Macmillan Publishers Ltd.. - 2058-5276. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Malaria is caused by parasites of the genus Plasmodium. All human-infecting Plasmodium species can establish long-lasting chronic infections(1-5), creating an infectious reservoir to sustain transmission(1,6). It is widely accepted that the maintenance of chronic infection involves evasion of adaptive immunity by antigenic variation(7). However, genes involved in this process have been identified in only two of five human-infecting species: Plasmodium falciparum and Plasmodium knowlesi. Furthermore, little is understood about the early events in the establishment of chronic infection in these species. Using a rodent model we demonstrate that from the infecting population, only a minority of parasites, expressing one of several clusters of virulence-associated pir genes, establishes a chronic infection. This process occurs in different species of parasites and in different hosts. Establishment of chronicity is independent of adaptive immunity and therefore different from the mechanism proposed for maintenance of chronic P. falciparum infections(7-9). Furthermore, we show that the proportions of parasites expressing different types of pir genes regulate the time taken to establish a chronic infection. Because pir genes are common to most, if not all, species of Plasmodium(10), this process may be a common way of regulating the establishment of chronic infections.
  •  
25.
  • Bushell, Ellen, et al. (författare)
  • Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes
  • 2017
  • Ingår i: Cell. - : Cell Press. - 0092-8674 .- 1097-4172. ; 170:2, s. 260-272.e1-e4
  • Tidskriftsartikel (refereegranskat)abstract
    • The genomes of malaria parasites contain many genes of unknown function. To assist drug development through the identification of essential genes and pathways, we have measured competitive growth rates in mice of 2,578 barcoded Plasmodium berghei knockout mutants, representing >50% of the genome, and created a phenotype database. At a single stage of its complex life cycle, P. berghei requires two-thirds of genes for optimal growth, the highest proportion reported from any organism and a probable consequence of functional optimization necessitated by genomic reductions during the evolution of parasitism. In contrast, extreme functional redundancy has evolved among expanded gene families operating at the parasite-host interface. The level of genetic redundancy in a single-celled organism may thus reflect the degree of environmental variation it experiences. In the case of Plasmodium parasites, this helps rationalize both the relative successes of drugs and the greater difficulty of making an effective vaccine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 91

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy