SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blank R) "

Sökning: WFRF:(Blank R)

  • Resultat 1-25 av 72
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Vogel, Jacob W., et al. (författare)
  • Four distinct trajectories of tau deposition identified in Alzheimer’s disease
  • 2021
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:5, s. 871-881
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These ‘subtypes’ were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of ‘typical AD’ and a revisiting of tau pathological staging. © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
4.
  • Zhou, XP, et al. (författare)
  • Non-coding variability at the APOE locus contributes to the Alzheimer's risk
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 3310-
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is a leading cause of mortality in the elderly. While the coding change of APOE-ε4 is a key risk factor for late-onset AD and has been believed to be the only risk factor in the APOE locus, it does not fully explain the risk effect conferred by the locus. Here, we report the identification of AD causal variants in PVRL2 and APOC1 regions in proximity to APOE and define common risk haplotypes independent of APOE-ε4 coding change. These risk haplotypes are associated with changes of AD-related endophenotypes including cognitive performance, and altered expression of APOE and its nearby genes in the human brain and blood. High-throughput genome-wide chromosome conformation capture analysis further supports the roles of these risk haplotypes in modulating chromatin states and gene expression in the brain. Our findings provide compelling evidence for additional risk factors in the APOE locus that contribute to AD pathogenesis.
  •  
5.
  • Leymarie, N., et al. (författare)
  • Interlaboratory Study on Differential Analysis of Protein Glycosylation by Mass Spectrometry: The ABRF Glycoprotein Research Multi-Institutional Study 2012
  • 2013
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476. ; 12:10, s. 2935-2951
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods. T6G 2G2, Canada. [Cipollo, John F.; An, Yanming] US FDA, Ctr Biol Evaluat & Res, Bethesda, MD 20993 USA. [Desaire, Heather; Go, Eden P.] Univ Kansas, Lawrence, KS 66045 USA. [Goldman, Radoslav; Pompach, Petr; Sanda, Miloslav] Georgetown Univ, Dept Oncol, Washington, DC [Halim, Adnan; Larson, Goran; Nilsson, Jonas] Univ Gothenburg, Sahlgrenska Acad, Dept Clin Chem & [Hensbergen, Paul J.; Wuhrer, Manfred] Leiden Univ, Med Ctr, Biomol Mass Spectrometry Unit, NL- [Jabs, Wolfgang; Marx, Kristina; Resemann, Anja; Schweiger-Hufnagel, Ulrike; Suckau, Detlev] Bruker [Ly, Mellisa; Staples, Gregory O.] Agilent Technol, Agilent Labs, Santa Clara, CA 95051 USA. [Mechref, Yehia; Song, Ehwang] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Nyalwidhe, Julius O.; Watson, Megan] Eastern Virginia Med Sch, Leroy T Canoles Jr Canc Res Ctr, Dept [Packer, Nicolle H.; Thaysen-Andersen, Morten] Macquarie Univ, Dept Chem & Biomol Sci, Biomol [Sihlbom, Carina] Gothenburg Univ, Prote Core Facil, Gothenburg, Sweden. [Tang, Haixu] Indiana Univ, Sch Informat, Bloomington, IN 47405 USA. [Valmuv, Leena] Finnish Red Cross Blood Serv, Helsinki 00310, Finland. [Wada, Yoshinao] Osaka Med Ctr Maternal & Child Hlth, Res Inst, Izumi Ku, Osaka 5941101, Japan.
  •  
6.
  • Antoniou, A. C., et al. (författare)
  • Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers : Implications for risk prediction
  • 2010
  • Ingår i: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 70:23, s. 9742-9754
  • Tidskriftsartikel (refereegranskat)abstract
    • The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11, and rs10941679 at 5p12, and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased breast cancer risk for BRCA2 carriers (per-allele HR = 1.10, 95% CI: 1.03-1.18, P = 0.006 and HR = 1.09, 95% CI: 1.01-1.19, P = 0.03, respectively). Neither SNP was associated with breast cancer risk for BRCA1 carriers, and rs6504950 was not associated with breast cancer for either BRCA1 or BRCA2 carriers. Of the 9 polymorphisms investigated, 7 were associated with breast cancer for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, P = 7 × 10-11 - 0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (P = 0.0049, 0.03, respectively). All risk-associated polymorphisms appear to interact multiplicatively on breast cancer risk for mutation carriers. Based on the joint genotype distribution of the 7 risk-associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e., between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing breast cancer by age 80, compared with 42% to 50% for the 5% of carriers at lowest risk. Our findings indicated that these risk differences might be sufficient to influence the clinical management of mutation carriers.
  •  
7.
  • Antoniou, A. C., et al. (författare)
  • Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers
  • 2009
  • Ingår i: Human Molecular Genetics. - [Antoniou, Antonis C.; McGuffog, Lesley; Peock, Susan; Cook, Margaret; Frost, Debra; Oliver, Clare; Platte, Radka; Pooley, Karen A.; Easton, Douglas F.] Univ Cambridge, Dept Publ Hlth & Primary Care, Canc Res UK Genet Epidemiol Unit, Cambridge, England. [Sinilnikova, Olga M.; Leone, Melanie] Univ Lyon, CNRS, Hosp Civils Lyon,Ctr Leon Berard,UMR5201, Unite Mixte Genet Constitut Canc Frequents, Lyon, France. [Healey, Sue; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Chenevix-Trench, Georgia] Queensland Inst Med Res, Brisbane, Qld 4029, Australia. [Nevanlinna, Heli; Heikkinen, Tuomas] Univ Helsinki, Cent Hosp, Dept Obstet & Gynecol, FIN-00290 Helsinki, Finland. [Simard, Jacques] Univ Laval, Quebec City, PQ, Canada. [Simard, Jacques] Univ Quebec, Ctr Hosp, Canada Res Chair Oncogenet, Canc Genom Lab, Quebec City, PQ, Canada. Peter MacCallum Canc Inst, Melbourne, Vic 3002, Australia. [Neuhausen, Susan L.; Ding, Yuan C.] Univ Calif Irvine, Dept Epidemiol, Irvine, CA USA. [Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary] Mayo Clin, Rochester, MN USA. [Peterlongo, Paolo; Peissel, Bernard; Radice, Paolo] Fdn IRCCS Ist Nazl Tumori, Milan, Italy. [Peterlongo, Paolo; Radice, Paolo] Fdn Ist FIRC Oncol Molecolare, Milan, Italy. [Bonanni, Bernardo; Bernard, Loris] Ist Europeo Oncol, Milan, Italy. [Viel, Alessandra] IRCCS, Ctr Riferimento Oncol, Aviano, Italy. [Bernard, Loris] Cogentech, Consortium Genom Technol, Milan, Italy. [Szabo, Csilla I.] Mayo Clin, Coll Med, Dept Lab Med & Pathol, Rochester, MN USA. [Foretova, Lenka] Masaryk Mem Canc Inst, Dept Canc Epidemiol & Genet, Brno, Czech Republic. [Zikan, Michal] Charles Univ Prague, Dept Biochem & Expt Oncol, Fac Med 1, Prague, Czech Republic. [Claes, Kathleen] Ghent Univ Hosp, Ctr Med Genet, B-9000 Ghent, Belgium. [Greene, Mark H.; Mai, Phuong L.] US Natl Canc Inst, Clin Genet Branch, Rockville, MD USA. [Rennert, Gad; Lejbkowicz, Flavio] CHS Natl Canc Control Ctr, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] Carmel Hosp, Dept Community Med & Epidemiol, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] B Rappaport Fac Med, Haifa, Israel. [Andrulis, Irene L.; Glendon, Gord] Canc Care Ontario, Ontario Canc Genet Network, Toronto, ON M5G 2L7, Canada. [Andrulis, Irene L.] Mt Sinai Hosp, Fred A Litwin Ctr Canc Genet, Samuel Lunenfeld Res Inst, Toronto, ON, Canada. [Andrulis, Irene L.] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada. [Gerdes, Anne-Marie; Thomassen, Mads] Odense Univ Hosp, Dept Biochem Pharmacol & Genet, DK-5000 Odense, Denmark. [Sunde, Lone] Aarhus Univ Hosp, Dept Clin Genet, DK-8000 Aarhus, Denmark. [Caligo, Maria A.] Univ Pisa, Div Surg Mol & Ultrastructural Pathol, Dept Oncol, Pisa, Italy. [Caligo, Maria A.] Pisa Univ Hosp, Pisa, Italy. [Laitman, Yael; Kontorovich, Tair; Cohen, Shimrit; Friedman, Eitan] Chaim Sheba Med Ctr, Susanne Levy Gertner Oncogenet Unit, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella] Chaim Sheba Med Ctr, Inst Oncol, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella; Friedman, Eitan] Tel Aviv Univ, Sackler Sch Med, IL-69978 Tel Aviv, Israel. [Dagan, Efrat; Baruch, Ruth Gershoni] Rambam Med Ctr, Genet Inst, Haifa, Israel. [Harbst, Katja] Lund Univ, Dept Oncol, S-22100 Lund, Sweden. [Barbany-Bustinza, Gisela; Rantala, Johanna] Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden. [Ehrencrona, Hans] Uppsala Univ, Dept Genet & Pathol, Uppsala, Sweden. [Karlsson, Per] Sahlgrenska Univ, Dept Oncol, Gothenburg, Sweden. [Domchek, Susan M.; Nathanson, Katherine L.] Univ Penn, Philadelphia, PA 19104 USA. [Osorio, Ana; Benitez, Javier] Ctr Invest Biomed Red Enfermedades Raras CIBERERE, Inst Salud Carlos III, Madrid, Spain. [Osorio, Ana; Benitez, Javier] Spanish Natl Canc Ctr CNIO, Human Canc Genet Programme, Human Genet Grp, Madrid, Spain. [Blanco, Ignacio] Catalan Inst Oncol ICO, Canc Genet Counseling Program, Barcelona, Spain. [Lasa, Adriana] Hosp Santa Creu & Sant Pau, Genet Serv, Barcelona, Spain. [Hamann, Ute] Deutsch Krebsforschungszentrum, Neuenheimer Feld 580 69120, D-6900 Heidelberg, Germany. [Hogervorst, Frans B. L.] Netherlands Canc Inst, Dept Pathol, Family Canc Clin, NL-1066 CX Amsterdam, Netherlands. [Rookus, Matti A.] Netherlands Canc Inst, Dept Epidemiol, Amsterdam, Netherlands. [Collee, J. Margriet] Erasmus Univ, Dept Clin Genet, Rotterdam Family Canc Clin, Med Ctr, NL-3000 DR Rotterdam, Netherlands. [Devilee, Peter] Dept Genet Epidemiol, Leiden, Netherlands. [Wijnen, Juul] Leiden Univ, Med Ctr, Ctr Human & Clin Genet, Leiden, Netherlands. [Ligtenberg, Marjolijn J.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6525 ED Nijmegen, Netherlands. [van der Luijt, Rob B.] Univ Utrecht, Med Ctr, Dept Clin Mol Genet, NL-3508 TC Utrecht, Netherlands. [Aalfs, Cora M.] Univ Amsterdam, Acad Med Ctr, Dept Clin Genet, NL-1105 AZ Amsterdam, Netherlands. [Waisfisz, Quinten] Vrije Univ Amsterdam, Med Ctr, Dept Clin Genet, Amsterdam, Netherlands. [van Roozendaal, Cornelis E. P.] Univ Med Ctr, Dept Clin Genet, Maastricht, Netherlands. [Evans, D. Gareth; Lalloo, Fiona] Cent Manchester Univ Hosp, NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Manchester, Lancs, England. [Eeles, Rosalind] Inst Canc Res, Translat Canc Genet Team, London SW3 6JB, England. [Eeles, Rosalind] Royal Marsden NHS Fdn Trust, London, England. [Izatt, Louise] Guys Hosp, Clin Genet, London SE1 9RT, England. [Davidson, Rosemarie] Ferguson Smith Ctr Clin Genet, Glasgow, Lanark, Scotland. [Chu, Carol] Yorkshire Reg Genet Serv, Leeds, W Yorkshire, England. [Eccles, Diana] Princess Anne Hosp, Wessex Clin Genet Serv, Southampton, Hants, England. [Cole, Trevor] Birmingham Womens Hosp Healthcare, NHS Trust, W Midlands Reg Genet Serv, Birmingham, W Midlands, England. [Hodgson, Shirley] Univ London, Dept Canc Genet, St Georges Hosp, London, England. [Godwin, Andrew K.; Daly, Mary B.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Stoppa-Lyonnet, Dominique] Univ Paris 05, Paris, France. [Stoppa-Lyonnet, Dominique] Inst Curie, INSERM U509, Serv Genet Oncol, Paris, France. [Buecher, Bruno] Inst Curie, Dept Genet, Paris, France. [Bressac-de Paillerets, Brigitte; Remenieras, Audrey; Lenoir, Gilbert M.] Inst Cancrol Gustave Roussy, Dept Genet, Villejuif, France. [Bressac-de Paillerets, Brigitte] Inst Cancerol Gustave Roussy, INSERM U946, Villejuif, France. [Caron, Olivier] Inst Cancerol Gustave Roussy, Dept Med, Villejuif, France. [Lenoir, Gilbert M.] Inst Cancerol Gustave Roussy, CNRS FRE2939, Villejuif, France. [Sevenet, Nicolas; Longy, Michel] Inst Bergonie, Lab Genet Constitutionnelle, Bordeaux, France. [Longy, Michel] Inst Bergonie, INSERM U916, Bordeaux, France. [Ferrer, Sandra Fert] Hop Hotel Dieu, Ctr Hosp, Lab Genet Chromosom, Chambery, France. [Prieur, Fabienne] CHU St Etienne, Serv Genet Clin Chromosom, St Etienne, France. [Goldgar, David] Univ Utah, Dept Dermatol, Salt Lake City, UT 84112 USA. [Miron, Alexander; Yassin, Yosuf] Dana Farber Canc Inst, Boston, MA 02115 USA. [John, Esther M.] No Calif Canc Ctr, Fremont, CA USA. [John, Esther M.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. [Buys, Saundra S.] Univ Utah, Hlth Sci Ctr, Huntsman Canc Inst, Salt Lake City, UT USA. [Hopper, John L.] Univ Melbourne, Melbourne, Australia. [Terry, Mary Beth] Columbia Univ, New York, NY USA. [Singer, Christian; Gschwantler-Kaulich, Daphne; Staudigl, Christine] Med Univ Vienna, Div Special Gynecol, Dept OB GYN, Vienna, Austria. [Hansen, Thomas V. O.] Univ Copenhagen, Rigshosp, Dept Clin Biochem, DK-2100 Copenhagen, Denmark. [Barkardottir, Rosa Bjork] Landspitali Univ Hosp, Dept Pathol, Reykjavik, Iceland. [Kirchhoff, Tomas; Pal, Prodipto; Kosarin, Kristi; Offit, Kenneth] Mem Sloan Kettering Canc Ctr, Dept Med, Clin Genet Serv, New York, NY 10021 USA. [Piedmonte, Marion] Roswell Pk Canc Inst, GOG Stat & Data Ctr, Buffalo, NY 14263 USA. [Rodriguez, Gustavo C.] Evanston NW Healthcare, NorthShore Univ Hlth Syst, Evanston, IL 60201 USA. [Wakeley, Katie] Tufts Univ, New England Med Ctr, Boston, MA 02111 USA. [Boggess, John F.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Basil, Jack] St Elizabeth Hosp, Edgewood, KY 41017 USA. [Schwartz, Peter E.] Yale Univ, Sch Med, New Haven, CT 06510 USA. [Blank, Stephanie V.] New York Univ, Sch Med, New York, NY 10016 USA. [Toland, Amanda E.] Ohio State Univ, Dept Internal Med, Columbus, OH 43210 USA. [Toland, Amanda E.] Ohio State Univ, Div Human Canc Genet, Ctr Comprehens Canc, Columbus, OH 43210 USA. [Montagna, Marco; Casella, Cinzia] IRCCS, Ist Oncologico Veneto, Immunol & Mol Oncol Unit, Padua, Italy. [Imyanitov, Evgeny N.] NN Petrov Inst Res Inst, St Petersburg, Russia. [Allavena, Anna] Univ Turin, Dept Genet Biol & Biochem, Turin, Italy. [Schmutzler, Rita K.; Versmold, Beatrix; Arnold, Norbert] Univ Cologne, Dept Obstet & Gynaecol, Div Mol Gynaeco Oncol, Cologne, Germany. [Engel, Christoph] Univ Leipzig, Inst Med Informat Stat & Epidemiol, Leipzig, Germany. [Meindl, Alfons] Tech Univ Munich, Dept Obstet & Gynaecol, Munich, Germany. [Ditsch, Nina] Univ Munich, Dept Obstet & Gynecol, Munich, Germany. Univ Schleswig Holstein, Dept Obstet & Gynaecol, Campus Kiel, Germany. [Niederacher, Dieter] Univ Duesseldorf, Dept Obstet & Gynaecol, Mol Genet Lab, Dusseldorf, Germany. [Deissler, Helmut] Univ Ulm, Dept Obstet & Gynaecol, Ulm, Germany. [Fiebig, Britta] Univ Regensburg, Inst Human Genet, Regensburg, Germany. [Suttner, Christian] Univ Heidelberg, Inst Human Genet, Heidelberg, Germany. [Schoenbuchner, Ines] Univ Wurzburg, Inst Human Genet, D-8700 Wurzburg, Germany. [Gadzicki, Dorothea] Med Univ, Inst Cellular & Mol Pathol, Hannover, Germany. [Caldes, Trinidad; de la Hoya, Miguel] Hosp Clinico San Carlos 28040, Madrid, Spain. : Oxford University Press. - 0964-6906 .- 1460-2083. ; 18:22, s. 4442-4456
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard ratio (HR) = 1.16, 95% CI: 1.07-1.25, P-trend = 2.8 × 10-4]. The best fit for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04-1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04-1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98-1.14) was consistent with odds ratio estimates derived from population-based case-control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was no evidence that the associations vary by mutation type depending on whether the mutated protein is predicted to be stable or not. 
  •  
8.
  • Strakova, A., et al. (författare)
  • Recurrent horizontal transfer identifies mitochondrial positive selection in a transmissible cancer
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Autonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for 'selfish' traits, such as replicative advantage. However, few cases of this phenomenon arising within natural populations have been described. Here, we survey the frequency of mtDNA horizontal transfer within the canine transmissible venereal tumour (CTVT), a contagious cancer clone that occasionally acquires mtDNA from its hosts. Remarkably, one canine mtDNA haplotype, A1d1a, has repeatedly and recently colonised CTVT cells, recurrently replacing incumbent CTVT haplotypes. An A1d1a control region polymorphism predicted to influence transcription is fixed in the products of an A1d1a recombination event and occurs somatically on other CTVT mtDNA backgrounds. We present a model whereby 'selfish' positive selection acting on a regulatory variant drives repeated fixation of A1d1a within CTVT cells.
  •  
9.
  • Dramburg, S, et al. (författare)
  • EAACI Molecular Allergology User's Guide 2.0
  • 2023
  • Ingår i: Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology. - 1399-3038. ; 3434 Suppl 28, s. e13854-
  • Tidskriftsartikel (refereegranskat)
  •  
10.
  •  
11.
  • Matricardi, PM, et al. (författare)
  • EAACI Molecular Allergology User's Guide
  • 2016
  • Ingår i: Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology. - : Wiley. - 1399-3038. ; 2727 Suppl 23, s. 1-250
  • Tidskriftsartikel (refereegranskat)
  •  
12.
  • Osorio, A., et al. (författare)
  • Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the consortium of investigators of modifiers of BRCA1/BRCA2 (CIMBA)
  • 2009
  • Ingår i: British Journal of Cancer. - : Nature Publishing Group. - 0007-0920 .- 1532-1827. ; 101:12, s. 2048-2054
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. Methods: We have genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach. Results: We found no evidence of association with breast cancer risk for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93-1.04, P0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89-1.06, P0.5) mutation carriers. Conclusion: This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out.
  •  
13.
  •  
14.
  • Conley, R. B., et al. (författare)
  • Secondary Fracture Prevention: Consensus Clinical Recommendations from a Multistakeholder Coalition
  • 2020
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 35:1, s. 36-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis-related fractures are undertreated, due in part to misinformation about recommended approaches to patient care and discrepancies among treatment guidelines. To help bridge this gap and improve patient outcomes, the American Society for Bone and Mineral Research assembled a multistakeholder coalition to develop clinical recommendations for the optimal prevention of secondary fracture among people aged 65 years and older with a hip or vertebral fracture. The coalition developed 13 recommendations (7 primary and 6 secondary) strongly supported by the empirical literature. The coalition recommends increased communication with patients regarding fracture risk, mortality and morbidity outcomes, and fracture risk reduction. Risk assessment (including fall history) should occur at regular intervals with referral to physical and/or occupational therapy as appropriate. Oral, intravenous, and subcutaneous pharmacotherapies are efficacious and can reduce risk of future fracture. Patients need education, however, about the benefits and risks of both treatment and not receiving treatment. Oral bisphosphonates alendronate and risedronate are first-line options and are generally well tolerated; otherwise, intravenous zoledronic acid and subcutaneous denosumab can be considered. Anabolic agents are expensive but may be beneficial for selected patients at high risk. Optimal duration of pharmacotherapy is unknown but because the risk for second fractures is highest in the early post-fracture period, prompt treatment is recommended. Adequate dietary or supplemental vitamin D and calcium intake should be assured. Individuals being treated for osteoporosis should be reevaluated for fracture risk routinely, including via patient education about osteoporosis and fractures and monitoring for adverse treatment effects. Patients should be strongly encouraged to avoid tobacco, consume alcohol in moderation at most, and engage in regular exercise and fall prevention strategies. Finally, referral to endocrinologists or other osteoporosis specialists may be warranted for individuals who experience repeated fracture or bone loss and those with complicating comorbidities (eg, hyperparathyroidism, chronic kidney disease). (c) 2019 American Society for Bone and Mineral Research.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Park, Joochun, et al. (författare)
  • Toward the limit of nuclear binding on the N = Z line : Spectroscopy of Cd-96
  • 2019
  • Ingår i: Physical Review C. - : AMER PHYSICAL SOC. - 2469-9985 .- 2469-9993. ; 99:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A gamma -decaying isomeric state (tau(1/2) = 197(-17)(+19) ns) has been identified in Cd-96, which is one alpha particle away from the last known bound N = Z nucleus, Sn-100. Comparison of the results with shell-model calculations has allowed a tentative experimental level scheme to be deduced and the isomer to be interpreted as a medium-spin negative-parity spin trap based on the coupling of isoscalar (T = 0) and isovector (T = 1) neutron-proton pairs. The data also suggest evidence for the population of a 9(+) T = 1 state, which is predicted by shell-model calculations to be yrast. Such a low-lying T = 1 state, which is unknown in lighter mass even-even self-conjugate nuclei, can also be interpreted in terms of the coupling of T = 0 and T = 1 neutron-proton pairs.
  •  
19.
  • Watt, F. E., et al. (författare)
  • Towards prevention of post-traumatic osteoarthritis : report from an international expert working group on considerations for the design and conduct of interventional studies following acute knee injury
  • 2019
  • Ingår i: Osteoarthritis and Cartilage. - : Elsevier BV. - 1063-4584. ; 27:1, s. 23-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: There are few guidelines for clinical trials of interventions for prevention of post-traumatic osteoarthritis (PTOA), reflecting challenges in this area. An international multi-disciplinary expert group including patients was convened to generate points to consider for the design and conduct of interventional studies following acute knee injury. Design: An evidence review on acute knee injury interventional studies to prevent PTOA was presented to the group, alongside overviews of challenges in this area, including potential targets, biomarkers and imaging. Working groups considered pre-identified key areas: eligibility criteria and outcomes, biomarkers, injury definition and intervention timing including multi-modality interventions. Consensus agreement within the group on points to consider was generated and is reported here after iterative review by all contributors. Results: The evidence review identified 37 studies. Study duration and outcomes varied widely and 70% examined surgical interventions. Considerations were grouped into three areas: justification of inclusion criteria including the classification of injury and participant age (as people over 35 may have pre-existing OA); careful consideration in the selection and timing of outcomes or biomarkers; definition of the intervention(s)/comparator(s) and the appropriate time-window for intervention (considerations may be particular to intervention type). Areas for further research included demonstrating the utility of patient-reported outcomes, biomarkers and imaging outcomes from ancillary/cohort studies in this area, and development of surrogate clinical trial endpoints that shorten the duration of clinical trials and are acceptable to regulatory agencies. Conclusions: These considerations represent the first international consensus on the conduct of interventional studies following acute knee joint trauma.
  •  
20.
  • Yusuf, D, et al. (författare)
  • The transcription factor encyclopedia
  • 2012
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906. ; 13:3, s. R24-
  • Tidskriftsartikel (refereegranskat)
  •  
21.
  • Cockell, Charles S., et al. (författare)
  • Subsurface scientific exploration of extraterrestrial environments (MINAR 5) : analogue science, technology and education in the Boulby Mine, UK
  • 2019
  • Ingår i: International Journal of Astrobiology. - : Cambridges Institutes Press. - 1473-5504 .- 1475-3006. ; 18:2, s. 157-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The deep subsurface of other planetary bodies is of special interest for robotic and human exploration. The subsurface provides access to planetary interior processes, thus yielding insights into planetary formation and evolution. On Mars, the subsurface might harbour the most habitable conditions. In the context of human exploration, the subsurface can provide refugia for habitation from extreme surface conditions. We describe the fifth Mine Analogue Research (MINAR 5) programme at 1 km depth in the Boulby Mine, UK in collaboration with Spaceward Bound NASA and the Kalam Centre, India, to test instruments and methods for the robotic and human exploration of deep environments on the Moon and Mars. The geological context in Permian evaporites provides an analogue to evaporitic materials on other planetary bodies such as Mars. A wide range of sample acquisition instruments (NASA drills, Small Planetary Impulse Tool (SPLIT) robotic hammer, universal sampling bags), analytical instruments (Raman spectroscopy, Close-Up Imager, Minion DNA sequencing technology, methane stable isotope analysis, biomolecule and metabolic life detection instruments) and environmental monitoring equipment (passive air particle sampler, particle detectors and environmental monitoring equipment) was deployed in an integrated campaign. Investigations included studying the geochemical signatures of chloride and sulphate evaporitic minerals, testing methods for life detection and planetary protection around human-tended operations, and investigations on the radiation environment of the deep subsurface. The MINAR analogue activity occurs in an active mine, showing how the development of space exploration technology can be used to contribute to addressing immediate Earth-based challenges. During the campaign, in collaboration with European Space Agency (ESA), MINAR was used for astronaut familiarization with future exploration tools and techniques. The campaign was used to develop primary and secondary school and primary to secondary transition curriculum materials on-site during the campaign which was focused on a classroom extra vehicular activity simulation.
  •  
22.
  • Couch, Fergus J., et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 7:11375, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
  •  
23.
  •  
24.
  •  
25.
  • Papini, Chiara, et al. (författare)
  • Evolving therapies, neurocognitive outcomes, and functional independence in adult survivors of childhood glioma
  • 2024
  • Ingår i: Journal of the National Cancer Institute. - 0027-8874. ; 116:2, s. 288-298
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Treatment of childhood glioma has evolved to reduce radiotherapy exposure with the goal of limiting late toxicity. However, the associations between treatment changes and neurocognition, and the contribution of neurocognition and chronic health conditions to attainment of adult independence, remain unknown. Methods: Adult survivors of childhood glioma diagnosed in 1970-1999 in the Childhood Cancer Survivor Study (n ¼ 1284; median [minimum-maximum] 30 [18-51] years of age at assessment; 22 [15-34] years from diagnosis) self-reported neurocognitive impairment and chronic health conditions. Multivariable models evaluated associations between changes in treatment exposures (surgery only, chemotherapy [with or without surgery], cranial radiation [with or without chemotherapy and/or surgery]), and neurocognitive impairment. Latent class analysis with 5 indicators (employment, independent living, assistance with routine and/or personal care needs, driver’s license, marital or partner status) identified classes of functional independence. Path analysis tested associations among treatment exposures, neurocognitive impairment, chronic health conditions, and functional independence. Statistical tests were 2-sided. Results: Cranial radiation exposure decreased over time (51%, 1970s; 46%, 1980s; 27%, 1990s]. However, compared with siblings, survivors with any treatment exposure were at elevated risk for neurocognitive impairment, including surgery only (eg, memory: relative risk ¼ 2.22; task efficiency: relative risk ¼ 1.88; both P < .001). Three classes of functional independence were identified: independent (58%), moderately independent (20%), and nonindependent (22%). Cranial radiation was associated with nonindependence through impaired task efficiency (b ¼ 0.06), sensorimotor (b ¼ 0.06), and endocrine (b ¼ 0.10) chronic health conditions and through the associations between these conditions and task efficiency (each b ¼ 0.04). Sensorimotor and endocrine chronic health conditions were associated with nonindependence through memory. Conclusion: Most long-term glioma survivors achieve adult independence. However, functional nonindependence is associated with treatment-related neurocognitive impairment and chronic health conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 72
Typ av publikation
tidskriftsartikel (56)
konferensbidrag (12)
forskningsöversikt (3)
annan publikation (1)
Typ av innehåll
refereegranskat (59)
övrigt vetenskapligt/konstnärligt (13)
Författare/redaktör
Sundqvist, Bertil (7)
Blank, A (6)
Friedman, E. (5)
Benitez, J. (5)
Kurz, N (5)
Peterlongo, P (5)
visa fler...
Hamann, U (5)
Radice, P (5)
Simard, J (5)
Nevanlinna, H (5)
Chenevix-Trench, G (5)
Meindl, A (5)
Gerl, J. (5)
Jungclaus, A. (5)
Kojouharov, I. (5)
Schaffner, H. (5)
Doornenbal, P. (5)
Gorska, M. (5)
Saito, T (4)
Cook, J. (4)
Liu, Z. (4)
Foretova, L (4)
Heinz, A (4)
Andersson, R. (4)
Manoukian, S (4)
Devilee, P (4)
Kondev, F G (4)
Beesley, J (4)
Bednarczyk, P. (4)
Benzoni, G. (4)
Camera, F. (4)
Maj, A. (4)
Rudolph, Dirk (4)
Pietri, S. (4)
Regan, P. H. (4)
Walker, P.M. (4)
Wieland, O. (4)
Wollersheim, H.J. (4)
Geissel, H. (4)
Bruce, A.M. (4)
Podolyak, Zs. (4)
Steer, S. J. (4)
Cullen, I. J. (4)
Gelletly, W. (4)
Grebosz, J. (4)
Hoischen, Robert (4)
Lalkovski, S. (4)
Garnsworthy, A. B. (4)
Dombradi, Zs. (4)
Becker, F. (4)
visa färre...
Lärosäte
Karolinska Institutet (28)
Lunds universitet (26)
Umeå universitet (12)
Göteborgs universitet (11)
Uppsala universitet (10)
Linköpings universitet (7)
visa fler...
Chalmers tekniska högskola (7)
Jönköping University (4)
Kungliga Tekniska Högskolan (2)
Luleå tekniska universitet (2)
Stockholms universitet (2)
Naturhistoriska riksmuseet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (72)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (31)
Naturvetenskap (25)
Teknik (3)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy