SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bluemke David A.) "

Sökning: WFRF:(Bluemke David A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buschur, Kristina L., et al. (författare)
  • Peripheral Blood Mononuclear Cell Gene Expression Associated with Pulmonary Microvascular Perfusion: The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive Pulmonary Disease
  • 2024
  • Ingår i: Annals of the American Thoracic Society. - : American Thoracic Society. - 2329-6933 .- 2325-6621. ; 21:6, s. 884-894
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Chronic obstructive pulmonary disease (COPD) and emphysema are associated with endothelial damage and altered pulmonary microvascular perfusion. The molecular mechanisms underlying these changes are poorly understood in patients, in part because of the inaccessibility of the pulmonary vasculature. Peripheral blood mononuclear cells (PBMCs) interact with the pulmonary endothelium. Objectives: To test the association between gene expression in PBMCs and pulmonary microvascular perfusion in COPD. Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited two independent samples of COPD cases and controls with ⩾10 pack-years of smoking history. In both samples, pulmonary microvascular blood flow, pulmonary microvascular blood volume, and mean transit time were assessed on contrast-enhanced magnetic resonance imaging, and PBMC gene expression was assessed by microarray. Additional replication was performed in a third sample with pulmonary microvascular blood volume measures on contrast-enhanced dual-energy computed tomography. Differential expression analyses were adjusted for age, gender, race/ethnicity, educational attainment, height, weight, smoking status, and pack-years of smoking. Results: The 79 participants in the discovery sample had a mean age of 69 ± 6 years, 44% were female, 25% were non-White, 34% were current smokers, and 66% had COPD. There were large PBMC gene expression signatures associated with pulmonary microvascular perfusion traits, with several replicated in the replication sets with magnetic resonance imaging (n = 47) or dual-energy contrast-enhanced computed tomography (n = 157) measures. Many of the identified genes are involved in inflammatory processes, including nuclear factor-κB and chemokine signaling pathways. Conclusions: PBMC gene expression in nuclear factor-κB, inflammatory, and chemokine signaling pathways was associated with pulmonary microvascular perfusion in COPD, potentially offering new targetable candidates for novel therapies.
  •  
2.
  • Petersen, Steffen E, et al. (författare)
  • Cardiovascular Magnetic Resonance for Patients With COVID-19
  • 2022
  • Ingår i: JACC: Cardiovascular Imaging. - : Elsevier BV. - 1876-7591 .- 1936-878X. ; 15:4, s. 685-699
  • Forskningsöversikt (refereegranskat)abstract
    • COVID-19 is associated with myocardial injury caused by ischemia, inflammation, or myocarditis. Cardiovascular magnetic resonance (CMR) is the noninvasive reference standard for cardiac function, structure, and tissue composition. CMR is a potentially valuable diagnostic tool in patients with COVID-19 presenting with myocardial injury and evidence of cardiac dysfunction. Although COVID-19-related myocarditis is likely infrequent, COVID-19-related cardiovascular histopathology findings have been reported in up to 48% of patients, raising the concern for long-term myocardial injury. Studies to date report CMR abnormalities in 26% to 60% of hospitalized patients who have recovered from COVID-19, including functional impairment, myocardial tissue abnormalities, late gadolinium enhancement, or pericardial abnormalities. In athletes post-COVID-19, CMR has detected myocarditis-like abnormalities. In children, multisystem inflammatory syndrome may occur 2 to 6 weeks after infection; associated myocarditis and coronary artery aneurysms are evaluable by CMR. At this time, our understanding of COVID-19-related cardiovascular involvement is incomplete, and multiple studies are planned to evaluate patients with COVID-19 using CMR. In this review, we summarize existing studies of CMR for patients with COVID-19 and present ongoing research. We also provide recommendations for clinical use of CMR for patients with acute symptoms or who are recovering from COVID-19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy