SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boeckx Pascal) "

Sökning: WFRF:(Boeckx Pascal)

  • Resultat 1-25 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lembrechts, Jonas J., et al. (författare)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Tidskriftsartikel (refereegranskat)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
2.
  • Andresen, Louise C., 1974, et al. (författare)
  • Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought
  • 2015
  • Ingår i: Soil. - : Copernicus GmbH. - 2199-3971 .- 2199-398X. ; 1:1, s. 341-349
  • Tidskriftsartikel (refereegranskat)abstract
    • Monomeric organic nitrogen (N) compounds such as free amino acids (FAAs) are an important resource for both plants and soil microorganisms and a source of ammonium (NH4+) via microbial FAA mineralization. We compared gross FAA dynamics with gross N mineralization in a Dutch heathland soil using a 15N tracing technique. A special focus was made on the effects of climate change factors warming and drought, followed by rewetting. Our aims were to (1) compare FAA mineralization (NH4+ production from FAAs) with gross N mineralization, (2) assess gross FAA production rate (depolymerization) and turnover time relative to gross N mineralization rate, and (3) assess the effects of a 14 years of warming and drought treatment on these rates. The turnover of FAA in the soil was ca. 3 h, which is almost 2 orders of magnitude faster than that of NH4+ (i.e. ca. 4 days). This suggests that FAA is an extensively used resource by soil microorganisms. In control soil (i.e. no climatic treatment), the gross N mineralization rate (10 ± 2.9 μg N g−1 day−1) was 8 times smaller than the total gross FAA production rate of five AAs (alanine, valine, leucine, isoleucine, proline: 127.4 to 25.0 μg N g−1 day−1). Gross FAA mineralization (3.4 ± 0.2 μg N g−1 day−1) contributed 34% to the gross N mineralization rate and is therefore an important component of N mineralization. In the drought treatment, a 6–29% reduction in annual precipitation caused a decrease of gross FAA production by 65% and of gross FAA mineralization by 41% compared to control. On the other hand, gross N mineralization was unaffected by drought, indicating an increased mineralization of other soil organic nitrogen (SON) components. A 0.5–1.5 °C warming did not significantly affect N transformations, even though gross FAA production declined. Overall our results suggest that in heathland soil exposed to droughts a different type of SON pool is mineralized. Furthermore, compared to agricultural soils, FAA mineralization was relatively less important in the investigated heathland. This indicates more complex mineralization dynamics in semi-natural ecosystems.
  •  
3.
  •  
4.
  • Andresen, Louise C., 1974, et al. (författare)
  • Free amino acids in the rhizosphere
  • 2014
  • Ingår i: 19th European Nitrogen Cycle Meeting. September 10-12th 2014, Gent, Belgium.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Andresen, Louise C., 1974, et al. (författare)
  • Patterns of free amino acids in tundra soils reflect mycorrhizal type, shrubification, and warming
  • 2022
  • Ingår i: Mycorrhiza. - : Springer Science and Business Media LLC. - 0940-6360 .- 1432-1890. ; 32:3-4, s. 305-313
  • Tidskriftsartikel (refereegranskat)abstract
    • The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect. To test this, we studied the composition of extractable free amino acids at five separate heath, meadow, and bog locations in subarctic and alpine Scandinavia, with long-term (13 to 24 years) warming manipulations. The plant communities all included a mixture of ecto-, ericoid-, and arbuscular mycorrhizal plant species. Vegetation dominated by grasses and forbs with arbuscular and non-mycorrhizal associations showed highest soil free amino acid content, distinguishing them from the sites dominated by shrubs with ecto- and ericoid-mycorrhizal associations. Warming increased shrub and decreased moss cover at two sites, and by using redundancy analysis, we found that altered soil free amino acid composition was related to this plant cover change. From this, we conclude that the mycorrhizal type is important in controlling soil N cycling and that expansion of shrubs with ectomycorrhiza (and to some extent ericoid mycorrhiza) can help retain N within the ecosystems by tightening the N cycle.
  •  
6.
  • Andresen, Louise C., 1974, et al. (författare)
  • Simultaneous quantification of depolymerization and mineralization rates by a novel 15N tracing model
  • 2016
  • Ingår i: SOIL. - : Copernicus GmbH. - 2199-398X. ; 2, s. 433-442
  • Tidskriftsartikel (refereegranskat)abstract
    • The depolymerization of soil organic matter, such as proteins and (oligo-)peptides, into monomers (e.g. amino acids) is currently considered to be the rate-limiting step for nitrogen (N) availability in terrestrial ecosystems. The mineralization of free amino acids (FAAs), liberated by the depolymerization of peptides, is an important fraction of the total mineralization of organic N. Hence, the accurate assessment of peptide depoly- merization and FAA mineralization rates is important in order to gain a better process-based understanding of the soil N cycle. In this paper, we present an extended numerical 15 N tracing model Ntrace , which incorporates the FAA pool and related N processes in order to provide a more robust and simultaneous quantification of de- polymerization and gross mineralization rates of FAAs and soil organic N. We discuss analytical and numerical approaches for two forest soils, suggest improvements of the experimental work for future studies, and conclude that (i) when about half of all depolymerized peptide N is directly mineralized, FAA mineralization can be as important a rate-limiting step for total gross N mineralization as peptide depolymerization rate; (ii) gross FAA mineralization and FAA immobilization rates can be used to develop FAA use efficiency (NUEFAA), which can reveal microbial N or carbon (C) limitation.
  •  
7.
  • Bauters, Marijn, et al. (författare)
  • Contrasting nitrogen fluxes in African tropical forests of the Congo Basin
  • 2019
  • Ingår i: Ecological Monographs. - : Wiley. - 0012-9615 .- 1557-7015. ; 89:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The observation of high losses of bioavailable nitrogen (N) and N richness in tropical forests is paradoxical with an apparent lack of N input. Hence, the current concept asserts that biological nitrogen fixation (BNF) must be a major N input for tropical forests. However, well-characterized N cycles are rare and geographically biased; organic N compounds are often neglected and soil gross N cycling is not well quantified. We conducted comprehensive N input and output measurements in four tropical forest types of the Congo Basin with contrasting biotic (mycorrhizal association) and abiotic (lowland–highland) environments. In 12 standardized setups, we monitored N deposition, throughfall, litterfall, leaching, and export during one hydrological year and completed this empirical N budget with nitrous oxide (N2O) flux measurement campaigns in both wet and dry season and insitu gross soil N transformations using 15N-tracing and numerical modeling. We found that all forests showed a very tight soil N cycle, with gross mineralization to immobilization ratios (M/I) close to 1 and relatively low gross nitrification to mineralization ratios (N/M). This was in line with the observation of dissolved organic nitrogen (DON) dominating N losses for the most abundant, arbuscular mycorrhizal associated, lowland forest type, but in contrast with high losses of dissolved inorganic nitrogen (DIN) in all other forest types. Altogether, our observations show that different forest types in central Africa exhibit N fluxes of contrasting magnitudes and N-species composition. In contrast to many Neotropical forests, our estimated N budgets of central African forests are imbalanced by a higher N input than output, with organic N contributing significantly to the input-output balance. This suggests that important other losses that are unaccounted for (e.g., NOx and N2 as well as particulate N) might play a major role in the N cycle of mature African tropical forests.
  •  
8.
  • Boeckx, Pascal, et al. (författare)
  • LEAKY NITROGEN CYCLE IN PRISTINE AFRICAN MOUNTAIN FOREST
  • 2014
  • Ingår i: Biogeomon 2014. 8th International Symposium on Ecosystem Behavior, July 13th – 17th, 2014, University of Bayreuth, Germany.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
9.
  •  
10.
  • Cooper, Declan L.M., et al. (författare)
  • Consistent patterns of common species across tropical tree communities
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 728-734
  • Tidskriftsartikel (refereegranskat)abstract
    • Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
  •  
11.
  • Cuni-Sanchez, Aida, et al. (författare)
  • High aboveground carbon stock of African tropical montane forests
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 596:7873, s. 536-542
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical forests store 40–50per cent of terrestrial vegetation carbon. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests. Owing to climatic and soil changes with increasing elevation, AGC stocks are lower in tropical montane forests compared with lowland forests. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4megagrams of carbon per hectare (95% confidence interval 137.1–164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70per cent and 32per cent higher than averages from plot networks in montane and lowland forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to helpto guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse and carbon-rich ecosystems.
  •  
12.
  • De Jonge, Cindy, et al. (författare)
  • The impact of soil chemistry, moisture and temperature on branched and isoprenoid GDGTs in soils : A study using six globally distributed elevation transects
  • 2024
  • Ingår i: Organic Geochemistry. - 0146-6380 .- 1873-5290. ; 187
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycerol dialkyl glycerol tetraethers (GDGTs) are microbial membrane-spanning lipids that are produced in a variety of environments. To better understand the potentially confounding effect of soil chemistry on the temperature relationship of branched GDGTs (brGDGTs), isoprenoid GDGTs (isoGDGTs) and GDGT-based proxies MBT’5ME and TEX86, soils from 6 elevation transects (mean annual air temperature 0 – 26 ℃, n = 74) were analyzed. Corroborating earlier work, the MBT’5ME index correlates well with mean annual air temperature in the low pH (pH < 7), non-arid soils under study (r = 0.87, p < 0.001). However, a clear over-estimation of reconstructed temperature in the lowest pH (<3.5) soils is observed, explained by the correlation between brGDGT Ia and free acidity. TEX86 also shows a significant correlation with mean annual air temperature (r = 0.45, p < 0.001), driven by temperature dependent concentration changes of isoGDGTs 3 and cren’. However, an overarching correlation with P/E values dominates concentration changes of all supposed Thaumarchaeotal isoGDGTs lipids (GDGT1-3, cren and cren’), implying a potential impact of soil moisture on TEX86 values. In addition to identifying the impact of these confounding factors on the temperature proxy, GDGT ratios that can be used to constrain changes in soil chemistry, specifically exchangeable Ca2+, sum of basic cations, exchangeable Fe3+ and sum of soil metals are proposed (0.53 < r2 < 0.68), while existing ratios for soil moisture availability are tested for the first time in a dataset of non-arid soils. While the impact of soil chemistry on GDGTs may complicate the interpretation of their temperature proxies, our proposed GDGT ratios can potentially be used to constrain a subset of soil chemistry changes through time.
  •  
13.
  • Duncanson, Laura, et al. (författare)
  • Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission
  • 2022
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257 .- 1879-0704. ; 270
  • Tidskriftsartikel (refereegranskat)abstract
    • NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.
  •  
14.
  • Getachew, Merkebu, et al. (författare)
  • Effects of shade tree species on soil biogeochemistry and coffee bean quality in plantation coffee
  • 2023
  • Ingår i: Agriculture, Ecosystems & Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 347
  • Tidskriftsartikel (refereegranskat)abstract
    • Shade trees are used in many coffee production systems across the globe. Beyond the benefits on biodiversity conservation, climate buffering, carbon sequestration and pathogen regulation, shade trees can impact the soil nutrient status via, for instance, litter inputs and nitrogen fixation. Since soil nutrients affect coffee quality and taste, there is also a potential indirect effect of shade tree species on coffee quality. Yet, in spite of the potentially large impact of shade tree species, quantitative data on the effects of shade trees on (i) soil biogeochemistry and (ii) the associated coffee bean quality remain scarce. To what extent four widely used shade trees species (Acacia abyssinica L., Albizia gummifera L., Cordia africana L. and Croton macrostachyus L.) in a plantation coffee agroforestry system impact soil biogeochemistry, and how this in turn affects coffee quality, measured as cupping scores and bean size. A significant negative impact of N-fixing shade tree species on soil pH and base cation concentrations was found. Plant-available and total phosphorus was enhanced by the presence of Albizia gummifera L. Thus, the present findings demonstrate that careful selection and integration of shade tree species such as Acacia abyssinica L. and Albizia gummifera L. into coffee production systems is a good practice for sustaining soil chemical properties in coffee agroecosystem. Despite the impacts on soil chemical characteristics, the shade tree species had no effect on coffee cup quality but did affect the bean mass. In this particular study, an attempt was made to quantify the impacts of widely used shade tree species on soil biogeochemistry and the subsequent effect on coffee bean quality in a plantation agroforestry system over the course of one season in southwest Ethiopia. However, it might be feasible to accommodate both relatively sparse time-series experimental data consisting of coffee farms from plantations and smallholders, which needs to be the goal of future research to accurately examine the impacts on the outcome variables.
  •  
15.
  • Getachew, Merkebu, et al. (författare)
  • The relationship between elevation, soil temperatures, soil chemical characteristics, and green coffee bean quality and biochemistry in southwest Ethiopia
  • 2022
  • Ingår i: Agronomy for Sustainable Development. - : Springer Science and Business Media LLC. - 1774-0746 .- 1773-0155. ; 42:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Green coffee bean quality and biochemistry are influenced by environmental variables. The present study was designed to study the influence of soil temperatures and soil chemistry on bean physical attributes, bean quality (assessed by three internationally trained, experienced, and certified Q-grade cuppers licensed by the Specialty Coffee Association (SCA) Coffee Quality Institute (CQI) and biochemistry of green coffee beans). The study was performed in 53 farms in southwest Ethiopia distributed along an elevational gradients (1500–2160 m a.s.l.) and with varying shade canopy cover (open to dense shade). A total of 159 individual coffee trees were sampled. Shade tree canopy cover, soil temperature, and soil chemistry, as well as coffee management intensity, were quantified as explanatory variables. Green bean quality was negatively correlated to soil temperatures. On the other hand, hundred bean mass and green bean biochemistry (caffeine, trigonelline, and chlorogenic acid contents) were negatively correlated to soil temperatures but positively to soil chemistry. During the coffee fruit development period (flowering to fruit maturity), temperature appeared to be a driving factor influencing coffee bean quality and biochemistry. Total specialty quality was significantly associated with soil chemistry, in which 84% of the variation could be explained by soil chemical variables. This study is the first to demonstrate the relationship between soil temperatures and chemistry in coffee bean quality and green bean biochemical compositions. Although the relative importance of factors such as air temperatures and humidity and soil moisture are missing from this study, we find that soil temperatures and soil chemistry have a strong effect on coffee bean quality and biochemistry. Overall, climate change, which generally involves a substantial increase in mean temperatures of tropical regions, could be expected to have a negative impact on coffee bean quality and biochemistry.
  •  
16.
  • Getachew, Merkebu, et al. (författare)
  • Within and among farm variability of coffee quality of smallholders in southwest Ethiopia
  • 2023
  • Ingår i: Agroforestry Systems. - : Springer Science and Business Media LLC. - 0167-4366 .- 1572-9680. ; 97:5, s. 883-905
  • Tidskriftsartikel (refereegranskat)abstract
    • The biophysical drivers that affect coffee quality vary within and among farms. Quantifying their relative importance is crucial for making informed decisions concerning farm management, marketability and profit for coffee farmers. The present study was designed to quantify the relative importance of biophysical variables affecting coffee bean quality within and among coffee farms and to evaluate a near infrared spectroscopy-based model to predict coffee quality. Twelve coffee plants growing under low, intermediate and dense shade were studied in twelve coffee farms across an elevational gradient (1470–2325 m asl) in Ethiopia. We found large within farm variability, demonstrating that conditions varying at the coffee plant-level are of large importance for physical attributes and cupping scores of green coffee beans. Overall, elevation appeared to be the key biophysical variable influencing all the measured coffee bean quality attributes at the farm level while canopy cover appeared to be the most important biophysical variable driving the above-mentioned coffee bean quality attributes at the coffee plant level. The biophysical variables driving coffee quality (total preliminary and specialty quality) were the same as those driving variations in the near-infrared spectroscopy data, which supports future use of this technology to assess green bean coffee quality. Most importantly, our findings show that random forest is computationally fast and robust to noise, besides having comparable prediction accuracy. Hence, it is a useful machine learning tool for regression studies and has potential for modeling linear and nonlinear multivariate calibrations. The study also confirmed that near-infrared spectroscopic-based predictions can be applied as a supplementary approach for coffee cup quality evaluations.
  •  
17.
  • Groenigen, Jan W. van, et al. (författare)
  • The soil N cycle: new insights and key challenges
  • 2015
  • Ingår i: Soil. - : Copernicus GmbH. - 2199-3971 .- 2199-398X. ; 1:1, s. 235-256
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of soil N cycling processes has been, is, and will be at the centre of attention in soil science research. The importance of N as a nutrient for all biota; the ever-increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measuring, and altering the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges of future research. We identify three key challenges with respect to basic N cycling processes producing gaseous emissions: 1. quantifying the importance of nitrifier denitrification and its main controlling factors; 2. characterizing the greenhouse gas mitigation potential and microbiological basis for N2O consumption; 3. characterizing hotspots and hot moments of denitrification Furthermore, we identified a key challenge with respect to modelling: 1. disentangling gross N transformation rates using advanced 15N / 18O tracing models Finally, we propose four key challenges related to how ecological interactions control N cycling processes: 1. linking functional diversity of soil fauna to N cycling processes beyond mineralization; 2. determining the functional relationship between root traits and soil N cycling; 3. characterizing the control that different types of mycorrhizal symbioses exert on N cycling; 4. quantifying the contribution of non-symbiotic pathways to total N fixation fluxes in natural systems We postulate that addressing these challenges will constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation, water and air quality, and climate stability.
  •  
18.
  •  
19.
  • Jiao, Xiang, et al. (författare)
  • PHIP - a novel candidate breast cancer susceptibility locus on 6q14.1
  • 2017
  • Ingår i: Oncotarget. - : IMPACT JOURNALS LLC. - 1949-2553. ; 8:61, s. 102769-102782
  • Tidskriftsartikel (refereegranskat)abstract
    • Most non-BRCA1/2 breast cancer families have no identified genetic cause. We used linkage and haplotype analyses in familial and sporadic breast cancer cases to identify a susceptibility locus on chromosome 6q. Two independent genome-wide linkage analysis studies suggested a 3 Mb locus on chromosome 6q and two unrelated Swedish families with a LOD > 2 together seemed to share a haplotype in 6q14.1. We hypothesized that this region harbored a rare high-risk founder allele contributing to breast cancer in these two families. Sequencing of DNA and RNA from the two families did not detect any pathogenic mutations. Finally, 29 SNPs in the region were analyzed in 44,214 cases and 43,532 controls from BCAC, and the original haplotypes in the two families were suggested as low-risk alleles for European and Swedish women specifically. There was also some support for one additional independent moderate-risk allele in Swedish familial samples. The results were consistent with our previous findings in familial breast cancer and supported a breast cancer susceptibility locus at 6q14.1 around the PHIP gene.
  •  
20.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
21.
  • Klemedtsson, Leif, 1953, et al. (författare)
  • Skogaryd – Integration of terrestrial and freshwater greenhouse gas sources and sinks
  • 2010
  • Ingår i: 1st COST meeting ‘Belowground carbon in Europeanforest’, Birmensdorf, Switzerland, 26–28 January 2010..
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Forests play an important role in the global carbon (C) cycle, and management as well as climate can cause major effects on the balance of C between the atmosphere and the plant/soil system. With re-gard to our commitments to the Kyoto and post-Kyoto actions on climate change, we need reliable predictions on how this balance is affected by management and climate. In 2006 the Skogaryd Research Forest was established in the southwest of Sweden (58°23’N, 12°09’E). The overall goal is to quantify net greenhouse gas (GHG) fluxes from drained spruce forest, by determining the individual fluxes and pools of C and nitrogen and elucidating their connection to site fertility, drainage status and abiotic parameters and then use the generated data in GHG models, for model validations and ultimately emissions predictions. During 2006-2009 the research has fo-cused on two sites, mineral and organic, dominated by Norway spruce (Picea abies). Both sites are drained fertile soils but with different land-use history that have affected their physical properties. Measurements includes: net ecosystem exchange of CO2, Shoot photosynthesis and respiration at different locations within the canopy, stem respiration, emissions of N2O and CH4 using manual cham-bers, soil respiration with automatic chambers including a trenching experiment where root-, mycelia-, and heterotrophic respiration are separated, fine root production using minirhizotrons, and mycelia production. The organic site also includes a wood ash experiment. From 2010 the research will be expanded to the whole watershed, from the mire system via streams, riparian zones, forests, to lakes and the subsequent exchange between the atmosphere and surface waters. Different terrestrial and limnic ecosystems will be linked holistically, using site specific tech-niques at different scales, from aircraft (km2) to chambers (m2) to create integrated models that can be used to quantify net GHG flux for management strategies.
  •  
22.
  • Lembrechts, Jonas J., et al. (författare)
  • Global maps of soil temperature
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Tidskriftsartikel (refereegranskat)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
23.
  • Ma, Shiyu, et al. (författare)
  • Local soil characteristics determine the microbial communities under forest understorey plants along a latitudinal gradient
  • 2019
  • Ingår i: Basic and Applied Ecology. - : Elsevier. - 1439-1791 .- 1618-0089. ; 36, s. 34-44
  • Tidskriftsartikel (refereegranskat)abstract
    • The soil microbial community is essential for maintaining ecosystem functioning and is intimately linked with the plant community. Yet, little is known on how soil microbial communities in the root zone vary at continental scales within plant species. Here we assess the effects of soil chemistry, large-scale environmental conditions (i.e. temperature, precipitation and nitrogen deposition) and forest land-use history on the soil microbial communities (measured by phospholipid fatty acids) in the root zone of four plant species (Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica) in forests along a 1700km latitudinal gradient in Europe. Soil microbial communities differed significantly among plant species, and soil chemistry was the main determinant of the microbial community composition within each plant species. Influential soil chemical variables for microbial communities were plant species-specific; soil acidity, however, was often an important factor. Large-scale environmental conditions, together with soil chemistry, only explained the microbial community composition in M. effusum and P. nemoralis. Forest land-use history did not affect the soil microbial community composition. Our results underpin the dominant role of soil chemistry in shaping microbial community composition variation within plant species at the continental scale, and provide insights into the composition and functionality of soil microbial communities in forest ecosystems.
  •  
24.
  • Nelissen, Victoria, et al. (författare)
  • Temporal evolution of biochar’s impact on soil nitrogen processes - a 15N tracing study
  • 2015
  • Ingår i: Global Change Biology Bioenergy. - : Wiley. - 1757-1693 .- 1757-1707. ; 7:4, s. 635-645
  • Tidskriftsartikel (refereegranskat)abstract
    • Biochar addition to soils has been proposed as a means to increase soil fertility and carbon sequestration. However, its effect on soil nitrogen (N) cycling and N availability is poorly understood. To gain better insight into the temporal variability of the impact of biochar on gross soil N dynamics, two 15N tracing experiments, in combination with numerical data analysis, were conducted with soil from a biochar field trial, 1 day and 1 year after application of a woody biochar type. The results showed accelerated soil N cycling immediately following biochar addition, with increased gross N mineralization (+34%), nitrification (+13%) and ammonium (NH4+) and nitrate (NO3−) immobilization rates (+4500% and +511%, respectively). One year after biochar application, the biochar acted as an inert substance with respect to N cycling. In the short term, biochar's labile C fraction and a pH increase can explain stimulated microbial activity, while in the longer term, when the labile C fraction has been mineralized and the pH effect has faded, the accelerating effect of biochar on N cycling ceases. In conclusion, biochar accelerates soil N transformations in the short-term through stimulating soil microbial activity, thereby increasing N bio-availability. This effect is, however, temporary.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 39
Typ av publikation
tidskriftsartikel (21)
konferensbidrag (15)
forskningsöversikt (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Boeckx, Pascal (38)
Rütting, Tobias, 197 ... (26)
Klemedtsson, Leif, 1 ... (12)
Müller, Christoph (8)
De Frenne, Pieter (6)
Verheyen, Kris (6)
visa fler...
Bodé, Samuel (6)
Björk, Robert G., 19 ... (6)
Andresen, Louise C., ... (5)
Bauters, Marijn (5)
Hylander, Kristoffer (4)
Thomsen, Frida (4)
Lewis, Simon L. (3)
Tietema, Albert (3)
Aerts, Rien (3)
Burslem, David F. R. ... (3)
Verbeeck, Hans (3)
Buchmann, Nina (3)
Van Meerbeek, Koenra ... (3)
Dolezal, Jiri (3)
Svoboda, Miroslav (3)
Aalto, Juha (2)
Luoto, Miska (2)
Dorrepaal, Ellen (2)
Tack, Ayco J. M. (2)
Ardö, Jonas (2)
Graae, Bente Jessen (2)
Wallin, Göran, 1955 (2)
Baker, Timothy R. (2)
Phillips, Oliver L. (2)
Merinero, Sonia (2)
Larson, Keith (2)
Alatalo, Juha M. (2)
Lenoir, Jonathan (2)
Kljun, Natascha (2)
Björsne, Anna-Karin, ... (2)
Cornelissen, Hans (2)
Klanderud, Kari (2)
Barlow, Jos (2)
Berenguer, Erika (2)
Smith, Stuart W. (2)
Coomes, David A. (2)
Björkman, Mats P., 1 ... (2)
Corona, Piermaria (2)
Boike, Julia (2)
Barthel, Matti (2)
Walz, Josefine (2)
Benito Alonso, José ... (2)
Pauli, Harald (2)
Myers-Smith, Isla H. (2)
visa färre...
Lärosäte
Göteborgs universitet (31)
Stockholms universitet (8)
Sveriges Lantbruksuniversitet (5)
Lunds universitet (3)
Umeå universitet (2)
Uppsala universitet (1)
visa fler...
Södertörns högskola (1)
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (39)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (35)
Lantbruksvetenskap (28)
Teknik (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy