SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boezen H. M.) "

Sökning: WFRF:(Boezen H. M.)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  • Kilpelainen, TO, et al. (författare)
  • Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity
  • 2019
  • Ingår i: Nature communications. - London : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 376-
  • Tidskriftsartikel (refereegranskat)abstract
    • Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.
  •  
5.
  • Artigas Soler, María, et al. (författare)
  • Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function.
  • 2011
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:11, s. 1082-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary function measures reflect respiratory health and are used in the diagnosis of chronic obstructive pulmonary disease. We tested genome-wide association with forced expiratory volume in 1 second and the ratio of forced expiratory volume in 1 second to forced vital capacity in 48,201 individuals of European ancestry with follow up of the top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P < 5 × 10(-8)) with pulmonary function in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (also known as EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1 and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.
  •  
6.
  • Zhou, Wei, et al. (författare)
  • Global Biobank Meta-analysis Initiative : Powering genetic discovery across human disease
  • 2022
  • Ingår i: Cell Genomics. - : Elsevier. - 2666-979X. ; 2:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)-a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.
  •  
7.
  • Loth, Daan W, et al. (författare)
  • Genome-wide association analysis identifies six new loci associated with forced vital capacity
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46, s. 669-677
  • Tidskriftsartikel (refereegranskat)abstract
    • Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.
  •  
8.
  • Sakornsakolpat, Phuwanat, et al. (författare)
  • Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:3, s. 494-505
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci associated with P < 5 x 10-8; 47 of these were previously described in association with either COPD or population-based measures of lung function. Of the remaining 35 new loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified functional enrichment of COPD risk loci in lung tissue, smooth muscle, and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups based on associations with quantitative imaging features and comorbidities. Our analyses provide further support for the genetic susceptibility and heterogeneity of COPD.
  •  
9.
  • Kupers, LK, et al. (författare)
  • Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 1893-
  • Tidskriftsartikel (refereegranskat)abstract
    • Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from −183 to 178 grams per 10% increase in methylation (PBonferroni < 1.06 x 10−7). In additional analyses in 7,278 participants, <1.3% of birthweight-associated differential methylation is also observed in childhood and adolescence, but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs that were previously reported to be related to maternal smoking (55/914, p = 6.12 x 10−74) and BMI in pregnancy (3/914, p = 1.13x10−3), but not with those related to folate levels in pregnancy. Whether the associations that we observe are causal or explained by confounding or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.
  •  
10.
  • Gudbjartsson, Daniel F., et al. (författare)
  • Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 41:3, s. 342-347
  • Tidskriftsartikel (refereegranskat)abstract
    • Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of inflammatory responses and thus have important roles in the pathogenesis of inflammatory diseases. Here we describe a genome-wide association scan for sequence variants affecting eosinophil counts in blood of 9,392 Icelanders. The most significant SNPs were studied further in 12,118 Europeans and 5,212 East Asians. SNPs at 2q12 (rs1420101), 2q13 (rs12619285), 3q21 (rs4857855), 5q31 (rs4143832) and 12q24 (rs3184504) reached genome-wide significance (P = 5.3 x 10(-14), 5.4 x 10(-10), 8.6 x 10(-17), 1.2 x 10(-10) and 6.5 x 10(-19), respectively). A SNP at IL1RL1 associated with asthma (P = 5.5 x 10(-12)) in a collection of ten different populations (7,996 cases and 44,890 controls). SNPs at WDR36, IL33 and MYB that showed suggestive association with eosinophil counts were also associated with atopic asthma (P = 4.2 x 10(-6), 2.2 x 10(-5) and 2.4 x 10(-4), respectively). We also found that a nonsynonymous SNP at 12q24, in SH2B3, associated significantly (P = 8.6 x 10(-8)) with myocardial infarction in six different populations (6,650 cases and 40,621 controls).
  •  
11.
  • Hancock, Dana B, et al. (författare)
  • Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for Pulmonary Function
  • 2012
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 8:12, s. e1003098-
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function, forced expiratory volume in one second (FEV1), and its ratio to forced vital capacity (FEV1/FVC). Given that cigarette smoking adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA) of single nucleotide polymorphism (SNP) and SNP-by-smoking (ever-smoking or pack-years) associations on FEV1 and FEV1/FVC across 19 studies (total N = 50,047). We identified three novel loci not previously associated with pulmonary function. SNPs in or near DNER (smallest PJMA = 5.00×10−11), HLA-DQB1 and HLA-DQA2 (smallest PJMA = 4.35×10−9), and KCNJ2 and SOX9 (smallest PJMA = 1.28×10−8) were associated with FEV1/FVC or FEV1 in meta-analysis models including SNP main effects, smoking main effects, and SNP-by-smoking (ever-smoking or pack-years) interaction. The HLA region has been widely implicated for autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER, KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed when considering only the genetic main effects.
  •  
12.
  • Wang, Gang, et al. (författare)
  • Spirometric phenotypes from early childhood to young adulthood : a Chronic Airway Disease Early Stratification study
  • 2021
  • Ingår i: ERJ Open Research. - : ERS Publications. - 2312-0541. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The prevalences of obstructive and restrictive spirometric phenotypes, and their relation to early-life risk factors from childhood to young adulthood remain poorly understood. The aim was to explore these phenotypes and associations with well-known respiratory risk factors across ages and populations in European cohorts.Methods: We studied 49334 participants from 14 population-based cohorts in different age groups (⩽10, >10–15, >15–20, >20–25 years, and overall, 5–25 years). The obstructive phenotype was defined as forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) z-score less than the lower limit of normal (LLN), whereas the restrictive phenotype was defined as FEV1/FVC z-score ⩾LLN, and FVC z-score Results: The prevalence of obstructive and restrictive phenotypes varied from 3.2–10.9% and 1.8–7.7%, respectively, without clear age trends. A diagnosis of asthma (adjusted odds ratio (aOR=2.55, 95% CI 2.14–3.04), preterm birth (aOR=1.84, 1.27–2.66), maternal smoking during pregnancy (aOR=1.16, 95% CI 1.01–1.35) and family history of asthma (aOR=1.44, 95% CI 1.25–1.66) were associated with a higher prevalence of obstructive, but not restrictive, phenotype across ages (5–25 years). A higher current body mass index (BMI was more often observed in those with the obstructive phenotype but less in those with the restrictive phenotype (aOR=1.05, 95% CI 1.03–1.06 and aOR=0.81, 95% CI 0.78–0.85, per kg·m−2 increase in BMI, respectively). Current smoking was associated with the obstructive phenotype in participants older than 10 years (aOR=1.24, 95% CI 1.05–1.46).Conclusion: Obstructive and restrictive phenotypes were found to be relatively prevalent during childhood, which supports the early origins concept. Several well-known respiratory risk factors were associated with the obstructive phenotype, whereas only low BMI was associated with the restrictive phenotype, suggesting different underlying pathobiology of these two phenotypes.
  •  
13.
  • Holliday, Katelyn M., et al. (författare)
  • Gaseous air pollutants and DNA methylation in a methylome-wide association study of an ethnically and environmentally diverse population of US adults
  • 2022
  • Ingår i: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 212
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic mechanisms may underlie air pollution-health outcome associations. We estimated gaseous air pollutant-DNA methylation (DNAm) associations using twelve subpopulations within Women's Health Initiative (WHI) and Atherosclerosis Risk in Communities (ARIC) cohorts (n = 8397; mean age 61.3 years; 83% female; 46% African-American, 46% European-American, 8% Hispanic/Latino). We used geocoded participant address-specific mean ambient carbon monoxide (CO), nitrogen oxides (NO2; NOx), ozone (O-3), and sulfur dioxide (SO2) concentrations estimated over the 2-, 7-, 28-, and 365-day periods before collection of blood samples used to generate Illumina 450 k array leukocyte DNAm measurements. We estimated methylome-wide, subpopulation-and race/ethnicity-stratified pollutant-DNAm associations in multi-level, linear mixed-effects models adjusted for sociodemographic, behavioral, meteorological, and technical covariates. We combined stratum-specific estimates in inverse variance-weighted meta-analyses and characterized significant associations (false discovery rate; FDR<0.05) at Cytosine-phosphate-Guanine (CpG) sites without among-strata heterogeneity (P-Cochran's Q > 0.05). We attempted replication in the Cooperative Health Research in Region of Augsburg (KORA) study and Normative Aging Study (NAS). We observed a -0.3 (95% CI: -0.4, -0.2) unit decrease in percent DNAm per interquartile range (IQR, 7.3 ppb) increase in 28-day mean NO2 concentration at cg01885635 (chromosome 3; regulatory region 290 bp upstream from ZNF621; FDR = 0.03). At intragenic sites cg21849932 (chromosome 20; LIME1; intron 3) and cg05353869 (chromosome 11; KLHL35; exon 2), we observed a -0.3 (95% CI: -0.4, -0.2) unit decrease (FDR = 0.04) and a 1.2 (95% CI: 0.7, 1.7) unit increase (FDR = 0.04), respectively, in percent DNAm per IQR (17.6 ppb) increase in 7-day mean ozone concentration. Results were not fully replicated in KORA and NAS. We identified three CpG sites potentially susceptible to gaseous air pollution-induced DNAm changes near genes relevant for cardiovascular and lung disease. Further harmonized investigations with a range of gaseous pollutants and averaging durations are needed to determine the effect of gaseous air pollutants on DNA methylation and ultimately gene expression.
  •  
14.
  • Imboden, Medea, et al. (författare)
  • Epigenome-wide association study of lung function level and its change
  • 2019
  • Ingår i: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 54:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous reports link differential DNA methylation (DNAme) to environmental exposures that are associated with lung function. Direct evidence on lung function DNAme is, however, limited. We undertook an agnostic epigenome-wide association study (EWAS) on pre-bronchodilation lung function and its change in adults.In a discovery-replication EWAS design, DNAme in blood and spirometry were measured twice, 6-15 years apart, in the same participants of three adult population-based discovery cohorts (n=2043). Associated DNAme markers (p<5×10-7) were tested in seven replication cohorts (adult: n=3327; childhood: n=420). Technical bias-adjusted residuals of a regression of the normalised absolute β-values on control probe-derived principle components were regressed on level and change of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and their ratio (FEV1/FVC) in the covariate-adjusted discovery EWAS. Inverse-variance-weighted meta-analyses were performed on results from discovery and replication samples in all participants and never-smokers.EWAS signals were enriched for smoking-related DNAme. We replicated 57 lung function DNAme markers in adult, but not childhood samples, all previously associated with smoking. Markers not previously associated with smoking failed replication. cg05575921 (AHRR (aryl hydrocarbon receptor repressor)) showed the statistically most significant association with cross-sectional lung function (FEV1/FVC: pdiscovery=3.96×10-21 and pcombined=7.22×10-50). A score combining 10 DNAme markers previously reported to mediate the effect of smoking on lung function was associated with lung function (FEV1/FVC: p=2.65×10-20).Our results reveal that lung function-associated methylation signals in adults are predominantly smoking related, and possibly of clinical utility in identifying poor lung function and accelerated decline. Larger studies with more repeat time-points are needed to identify lung function DNAme in never-smokers and in children.
  •  
15.
  • Prokic, Ivana, et al. (författare)
  • A cross-omics integrative study of metabolic signatures of chronic obstructive pulmonary disease
  • 2020
  • Ingår i: BMC Pulmonary Medicine. - : Springer Science and Business Media LLC. - 1471-2466. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundChronic obstructive pulmonary disease (COPD) is a common lung disorder characterized by persistent and progressive airflow limitation as well as systemic changes. Metabolic changes in blood may help detect COPD in an earlier stage and predict prognosis.MethodsWe conducted a comprehensive study of circulating metabolites, measured by proton Nuclear Magnetic Resonance Spectroscopy, in relation with COPD and lung function. The discovery sample consisted of 5557 individuals from two large population-based studies in the Netherlands, the Rotterdam Study and the Erasmus Rucphen Family study. Significant findings were replicated in 12,205 individuals from the Lifelines-DEEP study, FINRISK and the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) studies. For replicated metabolites further investigation of causality was performed, utilizing genetics in the Mendelian randomization approach.ResultsThere were 602 cases of COPD and 4955 controls used in the discovery meta-analysis. Our logistic regression results showed that higher levels of plasma Glycoprotein acetyls (GlycA) are significantly associated with COPD (OR = 1.16, P = 5.6 × 10− 4 in the discovery and OR = 1.30, P = 1.8 × 10− 6 in the replication sample). A bi-directional two-sample Mendelian randomization analysis suggested that circulating blood GlycA is not causally related to COPD, but that COPD causally increases GlycA levels. Using the prospective data of the same sample of Rotterdam Study in Cox-regression, we show that the circulating GlycA level is a predictive biomarker of COPD incidence (HR = 1.99, 95%CI 1.52–2.60, comparing those in the highest and lowest quartile of GlycA) but is not significantly associated with mortality in COPD patients (HR = 1.07, 95%CI 0.94–1.20).ConclusionsOur study shows that circulating blood GlycA is a biomarker of early COPD pathology.
  •  
16.
  • Romanos, Jihane, et al. (författare)
  • Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants
  • 2014
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 63:3, s. 415-422
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The majority of coeliac disease (CD) patients are not being properly diagnosed and therefore remain untreated, leading to a greater risk of developing CD-associated complications. The major genetic risk heterodimer, HLA-DQ2 and DQ8, is already used clinically to help exclude disease. However, approximately 40% of the population carry these alleles and the majority never develop CD. OBJECTIVE: We explored whether CD risk prediction can be improved by adding non-HLA-susceptible variants to common HLA testing. DESIGN: We developed an average weighted genetic risk score with 10, 26 and 57 single nucleotide polymorphisms (SNP) in 2675 cases and 2815 controls and assessed the improvement in risk prediction provided by the non-HLA SNP. Moreover, we assessed the transferability of the genetic risk model with 26 non-HLA variants to a nested case-control population (n=1709) and a prospective cohort (n=1245) and then tested how well this model predicted CD outcome for 985 independent individuals. RESULTS: Adding 57 non-HLA variants to HLA testing showed a statistically significant improvement compared to scores from models based on HLA only, HLA plus 10 SNP and HLA plus 26 SNP. With 57 non-HLA variants, the area under the receiver operator characteristic curve reached 0.854 compared to 0.823 for HLA only, and 11.1% of individuals were reclassified to a more accurate risk group. We show that the risk model with HLA plus 26 SNP is useful in independent populations. CONCLUSIONS: Predicting risk with 57 additional non-HLA variants improved the identification of potential CD patients. This demonstrates a possible role for combined HLA and non-HLA genetic testing in diagnostic work for CD.
  •  
17.
  • Allinson, James P, et al. (författare)
  • Changes in lung function in European adults born between 1884 and 1996 and implications for the diagnosis of lung disease: a cross-sectional analysis of ten population-based studies.
  • 2022
  • Ingår i: The Lancet. Respiratory medicine. - : Elsevier. - 2213-2619 .- 2213-2600. ; 10:1, s. 83-94
  • Tidskriftsartikel (refereegranskat)abstract
    • During the past century, socioeconomic and scientific advances have resulted in changes in the health and physique of European populations. Accompanying improvements in lung function, if unrecognised, could result in the misclassification of lung function measurements and misdiagnosis of lung diseases. We therefore investigated changes in population lung function with birth year across the past century, accounting for increasing population height, and examined how such changes might influence the interpretation of lung function measurements.In our analyses of cross-sectional data from ten European population-based studies, we included individuals aged 20-94 years who were born between 1884 and 1996, regardless of previous respiratory diagnoses or symptoms. FEV1, forced vital capacity (FVC), height, weight, and smoking behaviour were measured between 1965 and 2016. We used meta-regression to investigate how FEV1 and FVC (adjusting for age, study, height, sex, smoking status, smoking pack-years, and weight) and the FEV1/FVC ratio (adjusting for age, study, sex, and smoking status) changed with birth year. Using estimates from these models, we graphically explored how mean lung function values would be expected to progressively deviate from predicted values. To substantiate our findings, we used linear regression to investigate how the FEV1 and FVC values predicted by 32 reference equations published between 1961 and 2015 changed with estimated birth year.Across the ten included studies, we included 243465 European participants (mean age 51·4 years, 95% CI 51·4-51·5) in our analysis, of whom 136275 (56·0%) were female and 107190 (44·0%) were male. After full adjustment, FEV1 increased by 4·8 mL/birth year (95% CI 2·6-7·0; p<0·0001) and FVC increased by 8·8 mL/birth year (5·7-12·0; p<0·0001). Birth year-related increases in the FEV1 and FVC values predicted by published reference equations corroborated these findings. This height-independent increase in FEV1 and FVC across the last century will have caused mean population values to progressively exceed previously predicted values. However, the population mean adjusted FEV1/FVC ratio decreased by 0·11 per 100 birth years (95% CI 0·09-0·14; p<0·0001).If current diagnostic criteria remain unchanged, the identified shifts in European values will allow the easier fulfilment of diagnostic criteria for lung diseases such as chronic obstructive pulmonary disease, but the systematic underestimation of lung disease severity.The European Respiratory Society, AstraZeneca, Chiesi Farmaceutici, GlaxoSmithKline, Menarini, and Sanofi-Genzyme.
  •  
18.
  • Jarvis, Debbie, et al. (författare)
  • Prevalence of asthma-like symptoms with ageing
  • 2018
  • Ingår i: Thorax. - : BMJ Publishing Group Ltd. - 0040-6376 .- 1468-3296. ; 73:1, s. 37-48
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Change in the prevalence of asthma-like symptoms in populations of ageing adults is likely to be influenced by smoking, asthma treatment and atopy.METHODS: The European Community Respiratory Health Survey collected information on prevalent asthma-like symptoms from representative samples of adults aged 20-44 years (29 centres in 13 European countries and Australia) at baseline and 10 and 20 years later (n=7844). Net changes in symptom prevalence were determined using generalised estimating equations (accounting for non-response through inverse probability weighting), followed by meta-analysis of centre level estimates.FINDINGS: Over 20 years the prevalence of 'wheeze' and 'wheeze in the absence of a cold' decreased (-2.4%, 95% CI -3.5 to -1.3%; -1.5%, 95% CI -2.4 to -0.6%, respectively) but the prevalence of asthma attacks, use of asthma medication and hay fever/nasal allergies increased (0.6%, 95% CI 0.1 to 1.11; 3.6%, 95% CI 3.0 to 4.2; 2.7%, 95% CI 1.7 to 3.7). Changes were similar in the first 10 years compared with the second 10 years, except for hay fever/nasal allergies (increase seen in the first 10 years only). Decreases in these wheeze-related symptoms were largely seen in the group who gave up smoking, and were seen in those who reported hay fever/nasal allergies at baseline.INTERPRETATION: European adults born between 1946 and 1970 have, over the last 20 years, experienced less wheeze, although they were more likely to report asthma attacks, use of asthma medication and hay fever. Decrease in wheeze is largely attributable to smoking cessation, rather than improved treatment of asthma. It may also be influenced by reductions in atopy with ageing.
  •  
19.
  • Mogensen, Ida, et al. (författare)
  • Blood eosinophil level and lung function trajectories : cross-sectional and longitudinal studies in European cohorts
  • 2020
  • Ingår i: ERJ Open Research. - : European Respiratory Society (ERS). - 2312-0541. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Elevated blood eosinophils have been associated with lower lung function and are believed to be associated with an accelerated lung function decline.Method: Blood eosinophils were measured in four cohorts:  <45 years old cohort within the Vlagtwedde-Vlaardingen (V&V) study,  the Uppsala cohort of the European Community Respiratory Health Survey (ECRHS-Uppsala ; <45 years),  ≥45 years cohort within the V&V study and  the Rotterdam study (≥45 years). Blood eosinophils at baseline were classified as normal (<300 cells/μL) or elevated (≥300 cells/μL). Lung function was measured at baseline and follow-up with spirometry: forced exhaled volume during the first second (FEV1), vital capacity (VC) and their ratio FEV1/VC. The association between blood eosinophils and lung function was tested cross-sectionally using linear regression and longitudinally using a mixed model, both adjusted for age, sex, height, pack-years smoking and smoking status. Stratified analyses were done for asthma.Results: Elevated blood eosinophils associated to lower FEV1 (regression coefficient -149mL (95% Confidence Interval: -191; -107), VC (-124mL (-169; -78)) and FEV1/VC (-1.3% (-1.9; -0.7)) at baseline in the two <45 years cohorts, and to lower FEV1 (-79mL (-116; -41)) and FEV1/VC (-1.8% (-2.6; -1.0)) in the two ≥45 years cohorts. Longitudinally, elevated compared to normal blood eosinophils were associated with an excess decline in FEV1 (-5.7mL/year (-11.1; -0.4), V&V <45 years) and VC (-12mL/year (-23.6; -0.9), ECRHS-Uppsala) only in asthmatics.Conclusion: Elevated blood eosinophils are associated with lower lung function in the general population and with an accelerated lung function decline among asthmatics.
  •  
20.
  • Weidner, Julie, et al. (författare)
  • Sulfatase modifying factor 1 (SUMF1) is associated with Chronic Obstructive Pulmonary Disease
  • 2017
  • Ingår i: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-9921 .- 1465-993X. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: It has been observed that mice lacking the sulfatase modifying factor (Sumf1) developed an emphysema-like phenotype. However, it is unknown if SUMF1 may play a role in Chronic Obstructive Pulmonary Disease (COPD) in humans. The aim was to investigate if the expression and genetic regulation of SUMF1 differs between smokers with and without COPD. Methods: SUMF1 mRNA was investigated in sputum cells and whole blood from controls and COPD patients (all current or former smokers). Expression quantitative trait loci (eQTL) analysis was used to investigate if single nucleotide polymorphisms (SNPs) in SUMF1 were significantly associated with SUMF1 expression. The association of SUMF1 SNPs with COPD was examined in a population based cohort, Lifelines. SUMF1 mRNA from sputum cells, lung tissue, and lung fibroblasts, as well as lung function parameters, were investigated in relation to genotype. Results: Certain splice variants of SUMF1 showed a relatively high expression in lung tissue compared to many other tissues. SUMF1 Splice variant 2 and 3 showed lower levels in sputum cells from COPD patients as compared to controls. Twelve SNPs were found significant by eQTL analysis and overlapped with the array used for genotyping of Lifelines. We found alterations in mRNA expression in sputum cells and lung fibroblasts associated with SNP rs11915920 (top hit in eQTL), which validated the results of the lung tissue eQTL analysis. Of the twelve SNPs, two SNPs, rs793391 and rs308739, were found to be associated with COPD in Lifelines. The SNP rs793391 was also confirmed to be associated with lung function changes. Conclusions: We show that SUMF1 expression is affected in COPD patients compared to controls, and that SNPs in SUMF1 are associated with an increased risk of COPD. Certain COPD-associated SNPs have effects on either SUMF1 gene expression or on lung function. Collectively, this study shows that SUMF1 is associated with an increased risk of developing COPD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20
Typ av publikation
tidskriftsartikel (19)
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Boezen, H Marike (13)
Vonk, Judith M (11)
Lahousse, Lies (5)
Lind, Lars (4)
Heinrich, Joachim (4)
Imboden, Medea (4)
visa fler...
Strachan, David P (4)
North, Kari E. (4)
Surakka, Ida (4)
Jarvelin, Marjo-Riit ... (4)
Schulz, Holger (4)
Deary, Ian J (4)
Franke, L (4)
Hayward, C. (4)
Loth, Daan W (4)
Wain, Louise V (4)
Gharib, Sina A (4)
Zhao, Jing Hua (4)
Fornage, Myriam (4)
Manichaikul, Ani (4)
Janson, Christer (3)
Pin, Isabelle (3)
Probst-Hensch, Nicol ... (3)
Rudan, Igor (3)
Wareham, Nicholas J. (3)
Kogevinas, M (3)
Vollenweider, P. (3)
Snieder, H. (3)
Rotter, Jerome I. (3)
Campbell, A (3)
Karrasch, Stefan (3)
Gieger, Christian (3)
Agusti, Alvar (3)
van den Berge, Maart ... (3)
Esko, T (3)
Metspalu, A (3)
Ramasamy, Adaikalava ... (3)
Wilson, James F. (3)
Gu, Xiangjun (3)
Perola, M. (3)
Rivadeneira, Fernand ... (3)
Porteous, DJ (3)
Zhao, JH (3)
Obeidat, Ma'en (3)
Tang, Wenbo (3)
Cassano, Patricia A (3)
Eiriksdottir, Gudny (3)
Franceschini, Nora (3)
Hammond, Christopher ... (3)
Hancock, Dana B (3)
visa färre...
Lärosäte
Uppsala universitet (12)
Karolinska Institutet (7)
Umeå universitet (5)
Lunds universitet (4)
Göteborgs universitet (3)
Stockholms universitet (1)
visa fler...
Linköpings universitet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (16)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy