SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bondy Melissa) "

Search: WFRF:(Bondy Melissa)

  • Result 1-25 of 68
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Rajaraman, Preetha, et al. (author)
  • Genome-wide association study of glioma and meta-analysis
  • 2012
  • In: Human Genetics. - : SPRINGER. - 0340-6717 .- 1432-1203. ; 131:12, s. 1877-1888
  • Journal article (peer-reviewed)abstract
    • Gliomas account for approximately 80 % of all primary malignant brain tumors and, despite improvements in clinical care over the last 20 years, remain among the most lethal tumors, underscoring the need for gaining new insights that could translate into clinical advances. Recent genome-wide association studies (GWAS) have identified seven new susceptibility regions. We conducted a new independent GWAS of glioma using 1,856 cases and 4,955 controls (from 14 cohort studies, 3 case-control studies, and 1 population-based case-only study) and found evidence of strong replication for three of the seven previously reported associations at 20q13.33 (RTEL), 5p15.33 (TERT), and 9p21.3 (CDKN2BAS), and consistent association signals for the remaining four at 7p11.2 (EGFR both loci), 8q24.21 (CCDC26) and 11q23.3 (PHLDB1). The direction and magnitude of the signal were consistent for samples from cohort and case-control studies, but the strength of the association was more pronounced for loci rs6010620 (20q,13.33; RTEL) and rs2736100 (5p15.33, TERT) in cohort studies despite the smaller number of cases in this group, likely due to relatively more higher grade tumors being captured in the cohort studies. We further examined the 85 most promising single nucleotide polymorphism (SNP) markers identified in our study in three replication sets (5,015 cases and 11,601 controls), but no new markers reached genome-wide significance. Our findings suggest that larger studies focusing on novel approaches as well as specific tumor subtypes or subgroups will be required to identify additional common susceptibility loci for glioma risk.
  •  
2.
  • Schmidt, Amand F., et al. (author)
  • Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9
  • 2019
  • In: BMC Cardiovascular Disorders. - : BMC. - 1471-2261 .- 1471-2261. ; 19:1
  • Journal article (peer-reviewed)abstract
    • Background: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. Methods: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. Results: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer's disease - outcomes for which large-scale trial data were unavailable. Conclusions: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate.
  •  
3.
  • Amirian, E. Susan, et al. (author)
  • Approaching a Scientific Consensus on the Association between Allergies and Glioma Risk : a report from the Glioma International Case-Control Study
  • 2016
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 25:2, s. 282-290
  • Journal article (peer-reviewed)abstract
    • Background: Several previous studies have found inverse associations between glioma susceptibility and a history of allergies or other atopic conditions. Some evidence indicates that respiratory allergies are likely to be particularly relevant with regard to glioma risk. Using data from the Glioma International Case-Control Study (GICC), we examined the effects of respiratory allergies and other atopic conditions on glioma risk. Methods: The GICC contains detailed information on history of atopic conditions for 4,533 cases and 4,171 controls, recruited from 14 study sites across five countries. Using two-stage random-effects restricted maximum likelihood modeling to calculate meta-analysis ORs, we examined the associations between glioma and allergy status, respiratory allergy status, asthma, and eczema. Results: Having a history of respiratory allergies was associated with an approximately 30% lower glioma risk, compared with not having respiratory allergies (mOR, 0.72; 95% confidence interval, 0.58-0.90). This association was similar when restricting to high-grade glioma cases. Asthma and eczema were also significantly protective against glioma. Conclusion: A substantial amount of data on the inverse association between atopic conditions and glioma has accumulated, and findings from the GICC study further strengthen the existing evidence that the relationship between atopy and glioma is unlikely to be coincidental. Impact: As the literature approaches a consensus on the impact of allergies in glioma risk, future research can begin to shift focus to what the underlying biologic mechanism behind this association may be, which could, in turn, yield new opportunities for immunotherapy or cancer prevention. (C) 2016 AACR.
  •  
4.
  • Amirian, E. Susan, et al. (author)
  • Aspirin, NSAIDs, and Glioma Risk : Original Data from the Glioma International Case-Control Study and a Meta-analysis
  • 2019
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 28:3, s. 555-562
  • Journal article (peer-reviewed)abstract
    • Background: There have been few studies of sufficient size to address the relationship between glioma risk and the use of aspirin or NSAIDs, and results have been conflicting. The purpose of this study was to examine the associations between glioma and aspirin/NSAID use, and to aggregate these findings with prior published studies using meta-analysis.Methods: The Glioma International Case-Control Study (GICC) consists of 4,533 glioma cases and 4,171 controls recruited from 2010 to 2013. Interviews were conducted using a standardized questionnaire to obtain information on aspirin/NSAID use. We examined history of regular use for ≥6 months and duration-response. Restricted maximum likelihood meta-regression models were used to aggregate site-specific estimates, and to combine GICC estimates with previously published studies.Results: A history of daily aspirin use for ≥6 months was associated with a 38% lower glioma risk, compared with not having a history of daily use [adjusted meta-OR = 0.62; 95% confidence interval (CI), 0.54–0.70]. There was a significant duration-response trend (P = 1.67 × 10−17), with lower ORs for increasing duration of aspirin use. Duration-response trends were not observed for NSAID use. In the meta-analysis aggregating GICC data with five previous studies, there was a marginally significant association between use of aspirin and glioma (mOR = 0.84; 95% CI, 0.70–1.02), but no association for NSAID use.Conclusions: Our study suggests that aspirin may be associated with a reduced risk of glioma.Impact: These results imply that aspirin use may be associated with decreased glioma risk. Further research examining the association between aspirin use and glioma risk is warranted.
  •  
5.
  •  
6.
  •  
7.
  • Amirian, E. Susan, et al. (author)
  • History of chickenpox in glioma risk : a report from the glioma international case-control study (GICC)
  • 2016
  • In: Cancer Medicine. - : Wiley. - 2045-7634. ; 5:6, s. 1352-1358
  • Journal article (peer-reviewed)abstract
    • Varicella zoster virus (VZV) is a neurotropic alpha-herpesvirus that causes chickenpox and establishes life-long latency in the cranial nerve and dorsal root ganglia of the host. To date, VZV is the only virus consistently reported to have an inverse association with glioma. The Glioma International Case-Control Study (GICC) is a large, multisite consortium with data on 4533 cases and 4171 controls collected across five countries. Here, we utilized the GICC data to confirm the previously reported associations between history of chickenpox and glioma risk in one of the largest studies to date on this topic. Using two-stage random-effects restricted maximum likelihood modeling, we found that a positive history of chickenpox was associated with a 21% lower glioma risk, adjusting for age and sex (95% confidence intervals (CI): 0.65-0.96). Furthermore, the protective effect of chickenpox was stronger for high-grade gliomas. Our study provides additional evidence that the observed protective effect of chickenpox against glioma is unlikely to be coincidental. Future studies, including meta-analyses of the literature and investigations of the potential biological mechanism, are warranted.
  •  
8.
  • Amirian, E. Susan, et al. (author)
  • The Glioma International Case-Control Study : A Report From the Genetic Epidemiology of Glioma International Consortium
  • 2016
  • In: American Journal of Epidemiology. - : Oxford University Press (OUP). - 0002-9262 .- 1476-6256. ; 183:2, s. 85-91
  • Journal article (peer-reviewed)abstract
    • Decades of research have established only a few etiological factors for glioma, which is a rare and highly fatal brain cancer. Common methodological challenges among glioma studies include small sample sizes, heterogeneity of tumor subtypes, and retrospective exposure assessment. Here, we briefly describe the Glioma International Case-Control (GICC) Study (recruitment, 2010-2013), a study being conducted by the Genetic Epidemiology of Glioma International Consortium that integrates data from multiple data collection sites, uses a common protocol and questionnaire, and includes biospecimen collection. To our knowledge, the GICC Study is the largest glioma study to date that includes collection of blood samples, which will allow for genetic analysis and interrogation of gene-environment interactions.
  •  
9.
  • Andersson, Ulrika, et al. (author)
  • A comprehensive study of the association between the EGFR and ERBB2 genes and glioma risk
  • 2010
  • In: Acta Oncologica. - : Informa Healthcare. - 0284-186X .- 1651-226X. ; 12, s. 17-17
  • Journal article (peer-reviewed)abstract
    • Glioma is the most common type of adult brain tumor and glioblastoma, its most aggressive form, has a dismal prognosis. Receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR, ERBB2, ERBB3, ERBB4) family, and the vascular endothelial growth factor receptor (VEGFR), play a central role in tumor progression. We investigated the genetic variants of EGFR, ERBB2, VEGFR and their ligands, EGF and VEGF on glioma and glioblastoma risk. In addition, we evaluated the association of genetic variants of a newly discovered family of genes known to interact with EGFR: LRIG2 and LRIG3 with glioma and glioblastoma risk. Methods. We analyzed 191 tag single nucleotide polymorphisms (SNPs) capturing all common genetic variation of EGF, EGFR, ERBB2, LRIG2, LRIG3, VEGF and VEGFR2 genes. Material from four case-control studies with 725 glioma patients (329 of who were glioblastoma patients) and their 1 610 controls was used. Haplotype analyses were conducted using SAS/Genetics software. Results. Fourteen of the SNPs were significantly associated with glioma risk at p< 0.05, and 17 of the SNPs were significantly associated with glioblastoma risk at p< 0.05. In addition, we found that one EGFR haplotype was related to increased glioblastoma risk at p=0.009, Odds Ratio [OR] = 1.67 (95% confidence interval (CI): 1.14, 2.45). The Bonferroni correction made all p-values non-significant. One SNP, rs4947986 next to the intron/exon boundary of exon 7 in EGFR, was validated in an independent data set of 713 glioblastoma and 2 236 controls, [OR] = 1.42 (95% CI: 1.06,1.91). Discussion. Previous studies show that regulation of the EGFR pathway plays a role in glioma progression but the present study is the first to find that certain genotypes of the EGFR gene may be related to glioblastoma risk. Further studies are required to reinvestigate these findings and evaluate the functional significance.
  •  
10.
  • Andersson, Ulrika, et al. (author)
  • Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer
  • 2014
  • In: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 16:10, s. 1333-1340
  • Journal article (peer-reviewed)abstract
    • Background: Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several cancer phenotypes, to determine whether common chromosomal modifications might account for the familial aggregation of glioma and other cancers. Methods: Germline rearrangements in 146 glioma families (from the Gliogene Consortium; http://www.gliogene.org/) were examined using multiplex ligation-dependent probe amplification. These families all had at least 2 verified glioma cases and a third reported or verified glioma case in the same family or 2 glioma cases in the family with at least one family member affected with melanoma, colon, or breast cancer. The genomic areas covering TP53, CDKN2A, MLH1, and MSH2 were selected because these genes have been previously reported to be associated with cancer pedigrees known to include glioma. Results: We detected a single structural rearrangement, a deletion of exons 1-6 in MSH2, in the proband of one family with 3 cases with glioma and one relative with colon cancer. Conclusions: Large deletions and duplications are rare events in familial glioma cases, even in families with a strong family history of cancers that may be involved in known cancer syndromes.
  •  
11.
  • Andersson, Ulrika, et al. (author)
  • The association between longer relative leukocyte telomere length and risk of glioma is independent of the potentially confounding factors allergy, BMI, and smoking
  • 2019
  • In: Cancer Causes and Control. - : Springer. - 0957-5243 .- 1573-7225. ; 30:2, s. 177-185
  • Journal article (peer-reviewed)abstract
    • Purpose: Previous studies have suggested an association between relative leukocyte telomere length (rLTL) and glioma risk. This association may be influenced by several factors, including allergies, BMI, and smoking. Previous studies have shown that individuals with asthma and allergy have shortened relative telomere length, and decreased risk of glioma. Though, the details and the interplay between rLTL, asthma and allergies, and glioma molecular phenotype is largely unknown. Methods: rLTL was measured by qPCR in a Swedish population-based glioma case–control cohort (421 cases and 671 controls). rLTL was related to glioma risk and health parameters associated with asthma and allergy, as well as molecular events in glioma including IDH1 mutation, 1p/19q co-deletion, and EGFR amplification. Results: Longer rLTL was associated with increased risk of glioma (OR = 1.16; 95% CI 1.02–1.31). Similar to previous reports, there was an inverse association between allergy and glioma risk. Specific, allergy symptoms including watery eyes was most strongly associated with glioma risk. High body mass index (BMI) a year prior diagnosis was significantly protective against glioma in our population. Adjusting for allergy, asthma, BMI, and smoking did not markedly change the association between longer rLTL and glioma risk. rLTL among cases was not associated with IDH1 mutation, 1p/19q co-deletion, or EGFR amplification, after adjusting for age at diagnosis and sex. Conclusions: In this Swedish glioma case–control cohort, we identified that long rLTL increases the risk of glioma, an association not confounded by allergy, BMI, or smoking. This highlights the complex interplay of the immune system, rLTL and cancer risk.
  •  
12.
  • Atkins, Isabelle, et al. (author)
  • Transcriptome-Wide Association Study Identifies New Candidate Susceptibility Genes for Glioma
  • 2019
  • In: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 79:8, s. 2065-2071
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have so far identified 25 loci associated with glioma risk, with most showing specificity for either glioblastoma (GBM) or non-GBM tumors. The majority of these GWAS susceptibility variants reside in noncoding regions and the causal genes underlying the associations are largely unknown. Here we performed a transcriptome-wide association study to search for novel risk loci and candidate causal genes at known GWAS loci using Genotype-Tissue Expression Project (GTEx) data to predict cis-predicted gene expression in relation to GBM and non-GBM risk in conjunction with GWAS summary statistics on 12,488 glioma cases (6,183 GBM and 5,820 non-GBM) and 18,169 controls. Imposing a Bonferroni-corrected significance level of P < 5.69 x 10(-6), candidate novel risk locus for GBM (mean Z = 4.43; P = 5.68 x 10(-6)). GALNT6 resides at least 55 Mb away from any previously identified glioma risk variant, while all other 30 significantly associated genes were located within 1 Mb of known GWAS-identified loci and were not significant after conditioning on the known GWAS-identified variants. These data identify a novel locus (GALNT6 at 12q13.33) and 30 genes at 12 known glioma risk loci associated with glioma risk, providing further insights into glioma tumorigenesis.Significance: This study identifies new genes associated with glioma risk, increasing understanding of how these tumors develop.
  •  
13.
  • Bainbridge, Matthew N, et al. (author)
  • Germline mutations in shelterin complex genes are associated with familial glioma
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 107:1
  • Journal article (peer-reviewed)abstract
    • Gliomas are the most common brain tumor, with several histological subtypes of various malignancy grade. The genetic contribution to familial glioma is not well understood. Using whole exome sequencing of 90 individuals from 55 families, we identified two families with mutations in POT1 (p.G95C, p.E450X), a member of the telomere shelterin complex, shared by both affected individuals in each family and predicted to impact DNA binding and TPP1 binding, respectively. Validation in a separate cohort of 264 individuals from 246 families identified an additional mutation in POT1 (p.D617Efs), also predicted to disrupt TPP1 binding. All families with POT1 mutations had affected members with oligodendroglioma, a specific subtype of glioma more sensitive to irradiation. These findings are important for understanding the origin of glioma and could have importance for the future diagnostics and treatment of glioma.
  •  
14.
  • Berntsson, Shala G., 1964-, et al. (author)
  • Glioma-related seizures in relation to histopathological subtypes: a report from the glioma international case-control study.
  • 2018
  • In: Journal of neurology. - : Springer Science and Business Media LLC. - 1432-1459 .- 0340-5354. ; 265:6, s. 1432-1442
  • Journal article (peer-reviewed)abstract
    • The purpose of this study was to evaluate the distribution of glioma-related seizures and seizure control at the time of tumor diagnosis with respect to tumor histologic subtypes, tumor treatment and patient characteristics, and to compare seizure history preceding tumor diagnosis (or study enrollment) between glioma patients and healthy controls.The Glioma International Case Control study (GICC) risk factor questionnaire collected information on demographics, past medical/medication history, and occupational history. Cases from eight centers were also asked detailed questions on seizures in relation to glioma diagnosis; cases (n=4533) and controls (n=4171) were also asked about seizures less than 2years from diagnosis and previous seizure history more than 2years prior to tumor diagnosis, including childhood seizures.Low-grade gliomas (LGGs), particularly oligodendrogliomas/oligoastrocytomas, had the highest proportion of glioma-related seizures. Patients with low-grade astrocytoma demonstrated the most medically refractory seizures. A total of 83% of patients were using only one antiepileptic drug (AED), which was levetiracetam in 71% of cases. Gross total resection was strongly associated with reduced seizure frequency (p<0.009). No significant difference was found between glioma cases and controls in terms of seizure occurring more than 2 years before diagnosis or during childhood.Our study showed that glioma-related seizures were most common in low-grade gliomas. Gross total resection was associated with lower seizure frequency. Additionally, having a history of childhood seizures is not a risk factor ***for developing glioma-related seizures or glioma.
  •  
15.
  • Berntsson, Shala, et al. (author)
  • Tumor-associated epilepsy and glioma : are there common genetic pathways?
  • 2009
  • In: Acta Oncologica. - : Informa UK Limited. - 0284-186X .- 1651-226X. ; 48:7, s. 955-963
  • Research review (peer-reviewed)abstract
    • Background. Patients with glioma exhibit a great variability in clinical symptoms apart from variations in response to therapy and survival. Many patients present with epileptic seizures at disease onset, especially in case of low-grade gliomas, but not all have seizures. A large proportion of patients develop refractory seizures. It is likely that the variability in epileptic symptoms cannot exclusively be explained by tumor-related factors, but rather reflects complex interaction between tumor-related, environmental and hereditary factors. Material and methods. No data exist on susceptibility genes associated with epileptic symptoms in patients with glioma. However, an increasing number of candidate genes have been proposed for other focal epilepsies such as temporal lobe epilepsy. Some of the susceptibility candidate genes associated with focal epilepsy may contribute to epileptic symptoms also in patients with glioma. Results. This review presents an update on studies on genetic polymorphisms and focal epilepsy and brings forward putative candidate genes for tumor-associated epilepsy, based on the assumption that common etiological pathways may exist for glioma development and glioma-associated seizures. Conclusion. Genes involved in the immune response, in synaptic transmission and in cell cycle control are discussed that may play a role in the pathogenesis of tumor growth as well as epileptic symptoms in patients with gliomas.
  •  
16.
  •  
17.
  • Chen, Hongjie, et al. (author)
  • Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals
  • 2021
  • In: Human Genetics and Genomics Advances. - : Cell Press. - 2666-2477. ; 2:3
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWASs) have identified thousands of cancer risk loci revealing many risk regions shared across multiple cancers. Characterizing the cross-cancer shared genetic basis can increase our understanding of global mechanisms of cancer development. In this study, we collected GWAS summary statistics based on up to 375,468 cancer cases and 530,521 controls for fourteen types of cancer, including breast (overall, estrogen receptor [ER]-positive, and ER-negative), colorectal, endometrial, esophageal, glioma, head/neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancer, to characterize the shared genetic basis of cancer risk. We identified thirteen pairs of cancers with statistically significant local genetic correlations across eight distinct genomic regions. Specifically, the 5p15.33 region, harboring the TERT and CLPTM1L genes, showed statistically significant local genetic correlations for multiple cancer pairs. We conducted a cross-cancer fine-mapping of the 5p15.33 region based on eight cancers that showed genome-wide significant associations in this region (ER-negative breast, colorectal, glioma, lung, melanoma, ovarian, pancreatic, and prostate cancer). We used an iterative analysis pipeline implementing a subset-based meta-analysis approach based on cancer-specific conditional analyses and identified ten independent cross-cancer associations within this region. For each signal, we conducted cross-cancer fine-mapping to prioritize the most plausible causal variants. Our findings provide a more in-depth understanding of the shared inherited basis across human cancers and expand our knowledge of the 5p15.33 region in carcinogenesis.
  •  
18.
  • Choi, Dong-Joo, et al. (author)
  • The genomic landscape of familial glioma
  • 2023
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 9:17
  • Journal article (peer-reviewed)abstract
    • Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 (P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3, and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.
  •  
19.
  • Davis, Faith G, et al. (author)
  • Issues of diagnostic review in brain tumor studies : from the brain tumor epidemiology consortium
  • 2008
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 17:3, s. 484-489
  • Journal article (peer-reviewed)abstract
    • Epidemiologists routinely conduct centralized single pathology reviews to minimize interobserver diagnostic variability, but this practice does not facilitate the combination of studies across geographic regions and institutions where diagnostic practices differ. A meeting of neuropathologists and epidemiologists focused on brain tumor classification issues in the context of protocol needs for consortial studies (http://epi.grants.cancer.gov/btec/). It resulted in recommendations relevant to brain tumors and possibly other rare disease studies. Two categories of brain tumors have enough general agreement over time, across regions, and between individual pathologists that one can consider using existing diagnostic data without further review: glioblastomas and meningiomas (as long as uniform guidelines such as those provided by the WHO are used). Prospective studies of these tumors benefit from collection of pathology reports, at a minimum recording the pathology department and classification system used in the diagnosis. Other brain tumors, such as oligodendroglioma, are less distinct and require careful histopathologic review for consistent classification across study centers. Epidemiologic study protocols must consider the study specific aims, diagnostic changes that have taken place over time, and other issues unique to the type(s) of tumor being studied. As diagnostic changes are being made rapidly, there are no readily available answers on disease classification issues. It is essential that epidemiologists and neuropathologists collaborate to develop appropriate study designs and protocols for specific hypothesis and populations.
  •  
20.
  • Disney-Hogg, Linden, et al. (author)
  • Impact of atopy on risk of glioma : a Mendelian randomisation study
  • 2018
  • In: BMC Medicine. - : BioMed Central. - 1741-7015. ; 16
  • Journal article (peer-reviewed)abstract
    • Background: An inverse relationship between allergies with glioma risk has been reported in several but not all epidemiological observational studies. We performed an analysis of genetic variants associated with atopy to assess the relationship with glioma risk using Mendelian randomisation (MR), an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations.Methods: Two-sample MR was undertaken using genome-wide association study data. We used single nucleotide polymorphisms (SNPs) associated with atopic dermatitis, asthma and hay fever, IgE levels, and self-reported allergy as instrumental variables. We calculated MR estimates for the odds ratio (OR) for each risk factor with glioma using SNP-glioma estimates from 12,488 cases and 18,169 controls, using inverse-variance weighting (IVW), maximum likelihood estimation (MLE), weighted median estimate (WME) and mode-based estimate (MBE) methods. Violation of MR assumptions due to directional pleiotropy were sought using MR-Egger regression and HEIDI-outlier analysis.Results: Under IVW, MLE, WME and MBE methods, associations between glioma risk with asthma and hay fever, self-reported allergy and IgE levels were non-significant. An inverse relationship between atopic dermatitis and glioma risk was found by IVW (OR 0.96, 95% confidence interval (CI) 0.93-1.00, P = 0.041) and MLE (OR 0.96, 95% CI 0.94-0.99, P = 0.003), but not by WME (OR 0.96, 95% CI 0.91-1.01, P = 0.114) or MBE (OR 0.97, 95% CI 0.92-1.02, P = 0.194).Conclusions: Our investigation does not provide strong evidence for relationship between atopy and the risk of developing glioma, but findings do not preclude a small effect in relation to atopic dermatitis. Our analysis also serves to illustrate the value of using several MR methods to derive robust conclusions.
  •  
21.
  • Disney-Hogg, Linden, et al. (author)
  • Influence of obesity-related risk factors in the aetiology of glioma
  • 2018
  • In: British Journal of Cancer. - : Nature Publishing Group. - 0007-0920 .- 1532-1827. ; 118:7, s. 1020-1027
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Obesity and related factors have been implicated as possible aetiological factors for the development of glioma in epidemiological observation studies. We used genetic markers in a Mendelian randomisation framework to examine whether obesity-related traits influence glioma risk. This methodology reduces bias from confounding and is not affected by reverse causation. METHODS: Genetic instruments were identified for 10 key obesity-related risk factors, and their association with glioma risk was evaluated using data from a genome-wide association study of 12,488 glioma patients and 18,169 controls. The estimated odds ratio of glioma associated with each of the genetically defined obesity-related traits was used to infer evidence for a causal relationship. RESULTS: No convincing association with glioma risk was seen for genetic instruments for body mass index, waist-to-hip ratio, lipids, type-2 diabetes, hyperglycaemia or insulin resistance. Similarly, we found no evidence to support a relationship between obesity-related traits with subtypes of glioma-glioblastoma (GBM) or non-GBM tumours. CONCLUSIONS: This study provides no evidence to implicate obesity-related factors as causes of glioma.
  •  
22.
  •  
23.
  • Eckel-Passow, Jeanette E., et al. (author)
  • Using germline variants to estimate glioma and subtype risks
  • 2019
  • In: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 21:4, s. 451-461
  • Journal article (peer-reviewed)abstract
    • Background: Twenty-five single nucleotide polymorphisms (SNPs) are associated with adult diffuse glioma risk. We hypothesized that the inclusion of these 25 SNPs with age at diagnosis and sex could estimate risk of glioma as well as identify glioma subtypes.Methods: Case-control design and multinomial logistic regression were used to develop models to estimate the risk of glioma development while accounting for histologic and molecular subtypes. Case-case design and logistic regression were used to develop models to predict isocitrate dehydrogenase (IDH) mutation status. A total of 1273 glioma cases and 443 controls from Mayo Clinic were used in the discovery set, and 852 glioma cases and 231 controls from UCSF were used in the validation set. All samples were genotyped using a custom Illumina OncoArray.Results: Patients in the highest 5% of the risk score had more than a 14-fold increase in relative risk of developing an IDH mutant glioma. Large differences in lifetime absolute risk were observed at the extremes of the risk score percentile. For both IDH mutant 1p/19q non-codeleted glioma and IDH mutant 1p/19q codeleted glioma, the lifetime risk increased from almost null to 2.3% and almost null to 1.7%, respectively. The SNP-based model that predicted IDH mutation status had a validation concordance index of 0.85.Conclusions: These results suggest that germline genotyping can provide new tools for the initial management of newly discovered brain lesions. Given the low lifetime risk of glioma, risk scores will not be useful for population screening; however, they may be useful in certain clinically defined high-risk groups.
  •  
24.
  • Eckel-Passow, Jeanette, et al. (author)
  • USING GERMLINE VARIANTS TO PREDICT GLIOMA RISK AND IDENTIFY GLIOMA SUBTYPE PRE-OPERATIVELY
  • 2018
  • In: Neuro-Oncology. - : OXFORD UNIV PRESS INC. - 1522-8517 .- 1523-5866. ; 20, s. 82-82
  • Journal article (other academic/artistic)abstract
    • To date, 25 single nucleotide polymorphisms (SNPs) have been shown to be associated with overall glioma risk or with risk of specific subtypes of glioma. We hypothesized that the inclusion of these 25 SNPs with patient age at diagnosis and sex could predict risk of glioma as well as predict IDH mutation status. Thus, case-control design and multinomial logistic regression were used to develop models to estimate the risk of glioma development while accounting for molecular subtypes. Case-case design and logistic regression were used to develop models to predict IDH mutation status. Each model included all 25 glioma risk SNPs, patient age at diagnosis and sex. A total of 1273 glioma cases and 443 controls from Mayo Clinic were used in the discovery set, and 852 glioma cases and 231 controls from UCSF were used in the validation set. All samples were genotyped using a custom Illumina OncoArray. We observed that patients in the highest 5% of the risk score had more than a 14-fold increased relative risk of developing an IDH-mutant glioma, compared to patients with median risk score. Large differences in lifetime absolute risk were observed at the extremes of the risk score percentile categories. For both IDH-mutated 1p/19q non-codeleted glioma and IDH-mutated 1p/19q-codeleted glioma, the lifetime risk increased from almost null to 2.3% and almost null to 1.7%, respectively. The SNP-based model that predicted IDH mutation status had a validation c-index of 0.85. These results suggest that germline genotyping has the potential to provide a new tool for clinicians for the initial management of newly-discovered brain lesions. Specifically, given the low lifetime risk of glioma, SNP-based risk scores should not be useful for general population screening. However, with further research these risk scores may be useful in certain clinically-defined high-risk groups.
  •  
25.
  • Enciso-Mora, Victor, et al. (author)
  • Deciphering the 8q24.21 association for glioma
  • 2013
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:11, s. 2293-2302
  • Journal article (peer-reviewed)abstract
    • We have previously identified tagSNPs at 8q24.21 influencing glioma risk. We have sought to fine-map the location of the functional basis of this association using data from four genome-wide association studies, comprising a total of 4147 glioma cases and 7435 controls. To improve marker density across the 700 kb region, we imputed genotypes using 1000 Genomes Project data and high-coverage sequencing data generated on 253 individuals. Analysis revealed an imputed low-frequency SNP rs55705857 (P = 2.24 x 10(-38)) which was sufficient to fully capture the 8q24.21 association. Analysis by glioma subtype showed the association with rs55705857 confined to non-glioblastoma multiforme (non-GBM) tumours (P = 1.07 x 10(-67)). Validation of the non-GBM association was shown in three additional datasets (625 non-GBM cases, 2412 controls; P = 1.41 x 10(-28)). In the pooled analysis, the odds ratio for low-grade glioma associated with rs55705857 was 4.3 (P = 2.31 x 10(-94)). rs55705857 maps to a highly evolutionarily conserved sequence within the long non-coding RNA CCDC26 raising the possibility of direct functionality. These data provide additional insights into the aetiological basis of glioma development.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 68
Type of publication
journal article (64)
research review (3)
book chapter (1)
Type of content
peer-reviewed (56)
other academic/artistic (12)
Author/Editor
Bondy, Melissa L. (46)
Melin, Beatrice S. (40)
Johansen, Christoffe ... (34)
Il'yasova, Dora (31)
Jenkins, Robert B. (30)
Houlston, Richard S. (28)
show more...
Olson, Sara H. (26)
Bernstein, Jonine L. (26)
Shete, Sanjay (26)
Claus, Elizabeth B. (24)
Sadetzki, Siegal (23)
Wrensch, Margaret R. (22)
Schildkraut, Joellen (22)
Bondy, Melissa (22)
Armstrong, Georgina (21)
Barnholtz-Sloan, Jil ... (20)
Lai, Rose (19)
Amos, Christopher I. (19)
Melin, Beatrice (19)
Armstrong, Georgina ... (18)
Wrensch, Margaret (18)
Lachance, Daniel (17)
Ostrom, Quinn T. (15)
Liu, Yanhong (15)
Andersson, Ulrika (14)
Barnholtz-Sloan, Jil ... (14)
Merrell, Ryan T. (13)
Eckel-Passow, Jeanet ... (13)
Rajaraman, Preetha (12)
Lai, Rose K. (11)
Lau, Ching (11)
Kinnersley, Ben (11)
Amirian, E. Susan (10)
Davis, Faith G. (10)
Lachance, Daniel H. (10)
Sanson, Marc (10)
Houlston, Richard (9)
Jenkins, Robert (9)
Scheurer, Michael E. (9)
Lau, Ching C. (9)
Davis, Faith (9)
Merrell, Ryan (9)
Simon, Matthias (9)
Henriksson, Roger (8)
Zhou, Renke (8)
Ali-Osman, Francis (8)
Wiencke, John K. (8)
Chanock, Stephen J (7)
Chanock, Stephen (7)
Wang, Zhaoming (7)
show less...
University
Umeå University (64)
Karolinska Institutet (7)
Uppsala University (6)
Lund University (3)
University of Gothenburg (1)
Linköping University (1)
Language
English (68)
Research subject (UKÄ/SCB)
Medical and Health Sciences (63)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view