SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bonechi L.) "

Search: WFRF:(Bonechi L.)

  • Result 1-25 of 59
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Adriani, O., et al. (author)
  • A statistical procedure for the identification of positrons in the PAMELA experiment
  • 2010
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:1, s. 1-11
  • Journal article (peer-reviewed)abstract
    • The PAMELA satellite experiment has measured the cosmic-ray positron fraction between 1.5 GeV and 100 GeV. The need to reliably discriminate between the positron signal and proton background has required the development of an ad hoc analysis procedure. In this paper, a method for positron identification is described and its stability and capability to yield a correct background estimate is shown. The analysis includes new experimental data, the application of three different fitting techniques for the background sample and an estimate of systematic uncertainties due to possible inaccuracies in the background selection. The new experimental results confirm both solar modulation effects on cosmic-rays with low rigidities and an anomalous positron abundance above 10 GeV. (c) 2010 Elsevier B.V. All rights reserved.
  •  
2.
  • De Simone, N., et al. (author)
  • Latitudinal and radial gradients of galactic cosmic ray protons in the inner heliosphere - PAMELA and Ulysses observations
  • 2011
  • In: Astrophysics and Space Sciences Transactions (ASTRA). - : Copernicus GmbH. - 1810-6528 .- 1810-6536. ; 7:3, s. 425-434
  • Journal article (peer-reviewed)abstract
    • Ulysses, launched on 6 October 1990, was placed in an elliptical, high inclined (80.2°) orbit around the Sun, and was switched off in June 2009. It has been the only spacecraft exploring high-latitude regions of the inner heliosphere. The Kiel Electron Telescope (KET) aboard Ulysses measures electrons from 3 MeV to a few GeV and protons and helium in the energy range from 6 MeV/nucleon to above 2 GeV/nucleon. The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) space borne experiment was launched on 15 June 2006 and is continuously collecting data since then. The apparatus measures electrons, positrons, protons, anti-protons and heavier nuclei from about 100 MeV to several hundreds of GeV. Thus the combination of Ulysses and PAMELA measurements is ideally suited to determine the spatial gradients during the extended minimum of solar cycle 23. For protons in the rigidity interval 1.6-1.8 GV we find a radial gradient of 2.7%/AU and a latitudinal gradient of -0.024%/degree. Although the latitudinal gradient is as expected negative, its value is much smaller than predicted by current particle propagation models. This result is of relevance for the study of propagation parameters in the inner heliosphere.
  •  
3.
  • Topchiev, N. P., et al. (author)
  • GAMMA-400 gamma-ray observatory
  • 2015
  • In: Proceedings of Science. - : Proceedings of Science (PoS).
  • Conference paper (peer-reviewed)abstract
    • The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons+ positrons.Precision investigations of gamma-ray emission fromGalactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well asdiffuse gamma-rayemission,along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will studygamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The energy range of GAMMA-400 is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015eV for cosmic-ray nuclei. For high-energy gamma rays with energy from 10 to 100 GeV, the GAMMA-400 angular resolution improves from 0.1° to ∼0.01° and energy resolution from 3% to ∼1%; the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboardthe Russian space observatory.
  •  
4.
  • Adriani, O., et al. (author)
  • Latest results from the Pamela experiment
  • 2009
  • In: Proceedings of Science. ; , s. 1-6
  • Conference paper (peer-reviewed)abstract
    • In this paper we present the latest results of the Pamela satellite experiment, focusing in particular on the p̄/p and the e +/(e+ +e-) ratios.
  •  
5.
  • Adriani, O., et al. (author)
  • Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment
  • 2013
  • In: JETP Letters. - 0021-3640 .- 1090-6487. ; 96:10, s. 621-627
  • Journal article (peer-reviewed)abstract
    • It is interesting to measure the antiproton galactic component in cosmic rays in order to study the mechanisms by which particles and antiparticles are generated and propagate in the Galaxy and to search for new sources of, e.g., annihilation or decay of dark matter hypothetical particles. The antiproton spectrum and the ratio of the fluxes of primary cosmic ray antiprotons to protons with energies of 60 MeV to 350 GeV found from the data obtained from June 2006 to January 2010 in the PAMELA experiment are presented. The usage of the advanced data processing method based on the data classification mathematical model made it possible to increase statistics and analyze the region of higher energies than in the earlier works.
  •  
6.
  • Adriani, O., et al. (author)
  • Measurements of quasi-trapped electron and positron fluxes with PAMELA
  • 2009
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114, s. A12218-
  • Journal article (peer-reviewed)abstract
    • This paper presents precise measurements of the differential energy spectra of quasi-trapped secondary electrons and positrons and their ratio between 80 MeV and 10 GeV in the near-equatorial region (altitudes between 350 km and 600 km). Latitudinal dependences of the spectra are analyzed in detail. The results were obtained from July until November 2006 onboard the Resurs-DK satellite by the PAMELA spectrometer, a general purpose cosmic ray detector system built around a permanent magnet spectrometer and a silicon-tungsten calorimeter.
  •  
7.
  • Adriani, O., et al. (author)
  • OBSERVATIONS OF THE 2006 DECEMBER 13 AND 14 SOLAR PARTICLE EVENTS IN THE 80 MeV n(-1)-3 GeV n(-1) RANGE FROM SPACE WITH THE PAMELA DETECTOR
  • 2011
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 742:2, s. 102-
  • Journal article (peer-reviewed)abstract
    • We present the space spectrometer PAMELA observations of proton and helium fluxes during the 2006 December 13 and 14 solar particle events. This is the first direct measurement of the solar energetic particles in space with a single instrument in the energy range from similar to 80 MeV n(-1) up to similar to 3 GeV n(-1). For the December 13 event, measured energy spectra of solar protons and helium are compared with results obtained by neutron monitors and other detectors. Our measurements show a spectral behavior different from those derived from the neutron monitor network. No satisfactory analytical fitting was found for the energy spectra. During the first hours of the December 13 event, solar energetic particles spectra were close to the exponential form, demonstrating rather significant temporal evolution. Solar He with energy up to 1 GeV n(-1) was recorded on December 13. For the December 14 event, energy of solar protons reached 600 MeV, whereas the maximum energy of He was below 100 MeV n(-1). The spectra were slightly bent in the lower energy range and preserved their form during the second event. Differences in the particle flux appearance and temporal evolution of these two events may argue for special conditions leading to the acceleration of solar particles up to relativistic energies.
  •  
8.
  • Adriani, O., et al. (author)
  • PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra
  • 2011
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 332:6025, s. 69-72
  • Journal article (peer-reviewed)abstract
    • Protons and helium nuclei are the most abundant components of the cosmic radiation. Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in our Galaxy. We report precision measurements of the proton and helium spectra in the rigidity range 1 gigavolt to 1.2 teravolts performed by the satellite-borne experiment PAMELA (payload for antimatter matter exploration and light-nuclei astrophysics). We find that the spectral shapes of these two species are different and cannot be described well by a single power law. These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy. More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data.
  •  
9.
  • Adriani, O., et al. (author)
  • PAMELA Results on the Cosmic-Ray Antiproton Flux from 60 MeV to 180 GeV in Kinetic Energy
  • 2010
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 105:12, s. 121101-
  • Journal article (peer-reviewed)abstract
    • The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the Galaxy. More precise secondary production models are required for a complete interpretation of the results.
  •  
10.
  • Bazilevskaya, G. A., et al. (author)
  • Solar proton events at the end of the 23rd and start of the 24th solar cycle recorded in the PAMELA experiment
  • 2013
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 77:5, s. 493-496
  • Journal article (peer-reviewed)abstract
    • The PAMELA magnetic spectrometer was launched into a near-Earth orbit on board the Resurs-DK1 satellite in June 2006; in December 2006, it recorded the last strong solar high-energy particle event of the 23rd solar cycle. A deficit was thereafter observed in solar energetic particle events because of the lengthy solar activity minimum and the weak evolution of the next (24th) solar cycle. As a result, only a few solar events involving protons with energies of more than 100 MeV were recorded between 2010 and 1012. This work presents the preliminary results from measurements of charged particle fluxes in these events, recorded by the Pamela spectrometer.
  •  
11.
  • Boezio, M., et al. (author)
  • PAMELA and indirect dark matter searches
  • 2009
  • In: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 11, s. 105023-
  • Journal article (peer-reviewed)abstract
    • We present a review of the experimental results obtained by PAMELA in measuring the (p, (p) over bar ) and e(+/-) abundance in cosmic rays. In this context, we discuss the interpretation of the observed anomalous positron excess in terms of the annihilation of dark matter particles as well as in terms of standard astrophysical sources. Moreover we show the constraints on dark matter models from (p) over bar data.
  •  
12.
  • De Simone, N., et al. (author)
  • PAMELA : Measurements of matter and antimatter in space
  • 2011
  • In: Nuovo cimento della societa italiana de fisica. C, Geophysics and space physics. - 1124-1896 .- 1826-9885. ; 34:3, s. 79-87
  • Journal article (peer-reviewed)abstract
    • On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The combination of these devices allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV-100's GeV) with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectra in order to search for exotic sources, such as dark matter particle annihilations. PAMELA is also searching for primordial antinuclei (antihelium), and testing cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and precision studies of light nuclei and their isotopes. Moreover, PAMELA investigates phenomena connected with solar and earth physics. The main results and updated data will be presented.
  •  
13.
  • Galper, A. M., et al. (author)
  • International Russian-Italian mission "Rim-Pamela
  • 2009
  • In: Proceedings of the 13th Lomonosov Conference on Elementary Particle Physics. - : WORLD SCIENTIFIC. - 9812837582 - 9789812837585 ; , s. 199-206
  • Conference paper (peer-reviewed)abstract
    • The successful launch of spacecraft "RESURS DK" 1 with precision magnetic spectrometer "PAMELA" onboard was executed at Baikonur cosmodrome 15 June 2006. The primary phase of realization of International Russian-Italian Project "RIM-PAMELA" with German and Swedish scientists' participation has begun since the launch of instrument "PAMELA" that has mainly been directed to investigate the fluxes of galactic cosmic rays. This report contains the main scientific Project's tasks and the conditions of science program's implementation after one year since exploration has commenced.
  •  
14.
  • Mayorov, A. G., et al. (author)
  • Antiprotons of galactic cosmic radiation in the PAMELA experiment
  • 2013
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 77:5, s. 602-605
  • Journal article (peer-reviewed)abstract
    • A method for antiproton selection against a background of electrons, based on a mathematical model of data classification using variations in interparticle interaction in a calorimeter, and a method for excluding events accompanied by scattering in the inner detectors of a tracking system (which result in errors in the measured trajectory's curvature and charge sign) from analysis are discussed in this paper. Antiproton spectra and antiproton/proton flux ratio at energies of 0.06 to 350 GeV with statistics of events surpassing those in [1] are obtained. The results can be used to create models for the generation and distribution of particles in the Galaxy, and for searching and studying the nature of hypothetical dark matter particles.
  •  
15.
  • Menn, W., et al. (author)
  • The PAMELA space experiment
  • 2013
  • In: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 51:2, s. 209-218
  • Journal article (peer-reviewed)abstract
    • On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus is comprised of a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The combination of these devices allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV to 100's GeV) with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectra in order to search for exotic sources, such as dark matter particle annihilations. PAMELA is also searching for primordial antinuclei (anti-helium), and testing cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and precision studies of light nuclei and their isotopes. Moreover, PAMELA is investigating phenomena connected with solar and earth physics. After 4 years of operation in flight, PAMELA is now delivering coherent results about spectra and chemical composition of the charged cosmic radiation, allowing scenarios of production and propagation of cosmic rays to be fully established and understood.
  •  
16.
  • Mocchiutti, E., et al. (author)
  • PAMELA and electrons
  • 2011
  • Conference paper (peer-reviewed)abstract
    • The 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The combination of these devices allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV-100's GeV) with high statistics. The measurement of the positron to electron fraction and of the electron energy spectrum in order to search for exotic sources, such as dark matter particle annihilations, are within the PAMELA primary scientific goal.
  •  
17.
  • Mocchiutti, E., et al. (author)
  • Precision studies of cosmic rays with the PAMELA satellite experiment
  • 2009
  • In: 2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5. - : IEEE. - 9781424439621 ; , s. 2125-2130
  • Conference paper (peer-reviewed)abstract
    • The PAMELA satellite experiment was launched into low earth orbit on June 15th 2006. The combination of a permanent magnet silicon strip spectrometer, and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - 200 GeV). A primary scientific goal is to search for dark matter particle annihilations by measuring the energy spectra of cosmic ray antiparticles. Latest results from the PAMELA experiment will be reviewed with a particular focus on cosmic ray antiprotons and positrons. The status of PAMELA measurements for other cosmic ray species will also be reviewed.
  •  
18.
  • Mocchiutti, E., et al. (author)
  • Results from PAMELA
  • 2011
  • In: NUCL PHYS B-PROC SUP. - : Elsevier BV. ; , s. 243-248
  • Conference paper (peer-reviewed)abstract
    • The PAMELA satellite experiment was launched into low earth orbit on June 15(th) 2006. The combination of a permanent magnet silicon strip spectrometer and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - several hundred GeV). A primary scientific goal is to search for dark matter particle annihilation by measuring the energy spectra of cosmic ray antiparticles. Latest results from the PAMELA experiment are presented with a particular focus on cosmic ray antiprotons and positrons.
  •  
19.
  • Picozza, P., et al. (author)
  • Cosmic ray studies with PAMELA experiment
  • 2011
  • In: Proceedings of the 14th Lomonosov Conference on Elementary Particle Physics: Particle Physics at the Year of Astronomy. - 9814329673 - 9789814329675 ; , s. 200-206
  • Conference paper (peer-reviewed)abstract
    • The instrument PAMELA, in orbit since June 15th, 2006 on board of the Russian satellite Resurs DK1, is daily delivering to ground 16 Gigabytes of data. The apparatus is designed to study charged particles in the cosmic radiation, with a particular focus on antiparticles for searching antimatter and signals of dark matter annihilation. A combination of a magnetic spectrometer and different detectors allows antiparticles to be reliably identified from a large background of other charged particles. New results on the antiproton-to-proton and positron-toall electron ratios over a wideenergy range (1-100 GeV) have been obtained from the PAMELA mission. These data are mainly interpreted in terms of dark matter annihilation or pulsar contribution.
  •  
20.
  • Adriani, O., et al. (author)
  • An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV
  • 2009
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 458:7238, s. 607-609
  • Journal article (peer-reviewed)abstract
    • Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium(1), which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars(2) and microquasars(3) or through dark matter annihilation(4), which would be 'primary sources'. Previous statistically limited measurements(5-7) of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply overmuch of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.
  •  
21.
  • Adriani, O., et al. (author)
  • Measurements of cosmic-ray proton and helium spectra with the PAMELA calorimeter
  • 2013
  • In: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 51:2, s. 219-226
  • Journal article (peer-reviewed)abstract
    • We present a new measurement of the cosmic ray proton and helium spectra by the PAMELA experiment performed using the "thin" (in terms of nuclei interactions) sampling electromagnetic calorimeter. The described method, optimized by using Monte Carlo simulation, beam test and experimental data, allows the spectra to be measured up to 10 TeV, thus extending the PAMELA observational range based on the magnetic spectrometer measurement.
  •  
22.
  • Adriani, O., et al. (author)
  • Positrons and electrons in primary cosmic rays as measured in the PAMELA experiment
  • 2009
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 73:5, s. 568-570
  • Journal article (peer-reviewed)abstract
    • The PAMELA experiment is being carried out on board the Russian satellite Resurs DK1 placed in the near-earth near-polar orbit on June 15, 2006. The apparatus comprising a silicon-strip magnetic spectrometer and an electromagnetic calorimeter allows measurement of electron and positron fluxes in cosmic rays in a wide energy interval from ∼100 MeV to hundreds of GeV. The high-energy electron and positron separation technique is discussed and the data on positron-to-electron ratio in primary cosmic rays up to E ≃ 10 GeV from the 2006 - 2007 measurements are reported in this work.
  •  
23.
  • Adriani, O., et al. (author)
  • Secondary electron and positron fluxes in the near-Earth space observed in the ARINA and PAMELA experiments
  • 2009
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 73:3, s. 364-366
  • Journal article (peer-reviewed)abstract
    • Secondary electron and positron fluxes in the energy range from 3 MeV to 7 GeV were measured with the ARINA and PAMELA spectrometers onboard the Resurs-DK satellite launched on June 15, 2006 into an elliptical orbit with an inclination of 70.4° and an altitude of 350-600 km. It is shown that positrons dominate over electrons by a factor of up to 4-5 in the geomagnetic equator region (L < 1.2 and B > 0.25).
  •  
24.
  • Adriani, O., et al. (author)
  • The gamma-400 space observatory : Status and perspectives
  • 2014
  • In: Proceedings of Science. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The present design of the new space observatory GAMMA-400 is presented in this paper. The instrument has been designed for the optimal detection of gamma rays in a broad energy range (from ∼100 MeV up to 3 TeV), with excellent angular and energy resolution. The observatory will also allow precise and high statistic studies of the electron component in the cosmic rays up to the multi TeV region, as well as protons and nuclei spectra up to the knee region. The GAMMA-400 observatory will allow to address a broad range of science topics, like search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts and charged cosmic rays acceleration and diffusion mechanism up to the knee. 
  •  
25.
  • Adriani, O., et al. (author)
  • The PAMELA space mission
  • 2008
  • In: Astroparticle, Part. Space Phys., Detect. Med. Phys. Appl. - Proc. Conf.. - : WORLD SCIENTIFIC. - 9812819088 - 9789812819086 ; , s. 858-864
  • Conference paper (peer-reviewed)abstract
    • The PAMELA (a Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics) experiment, is a satellite-borne particle spectrometer. It was launched on 15th June 2006 from the Baikonur cosmodrome in Kazakhstan, is installed into the Russian Resurs-DK1 satellite. PAMELA is composed of a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. Among the PAMELA major objectives are the study of charged particles in the cosmic radiation, the investigation of the nature of dark matter, by mean of the measure of the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved. PAMELA has been in a nearly continuous data taking mode since llth July 2006. The status of the apparatus and performances will be presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 59

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view