SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bonnell J. W.) "

Sökning: WFRF:(Bonnell J. W.)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdo, A. A., et al. (författare)
  • Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 323:5922, s. 1688-1693
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gamma-ray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.
  •  
2.
  • Atwood, W. B., et al. (författare)
  • THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION
  • 2009
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 697:2, s. 1071-1102
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy gamma-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (4) localize point sources to 0.3-2 arcmin, (5) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (6) measure the diffuse isotropic gamma-ray background up to TeV energies, and (7) explore the discovery space for dark matter.
  •  
3.
  • Nolan, P. L., et al. (författare)
  • Fermi large area telescope second source catalog
  • 2012
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 199:2, s. 31-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.
  •  
4.
  • Abdo, A. A., et al. (författare)
  • A limit on the variation of the speed of light arising from quantum gravity effects
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 462:7271, s. 331-334
  • Tidskriftsartikel (refereegranskat)abstract
    • A cornerstone of Einstein’s special relativity is Lorentz invariance—the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, lPlanck~1.62×10-33cm or EPlanck = MPlanckc2~1.22×1019GeV), at which quantum effects are expected to strongly affect the nature of space–time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in γ-ray burst (GRB) light-curves. Here we report the detection of emission up to ~31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2EPlanck on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of lPlanck/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.
  •  
5.
  • Abdo, A. A., et al. (författare)
  • FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG
  • 2010
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 188:2, s. 405-436
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4 sigma. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.
  •  
6.
  • Ackermann, M., et al. (författare)
  • THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG
  • 2013
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 209:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (greater than or similar to 20 MeV) gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above similar to 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.
  •  
7.
  • Bale, S. D., et al. (författare)
  • The FIELDS Instrument Suite for Solar Probe Plus
  • 2016
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 204:1-4, s. 49-82
  • Forskningsöversikt (refereegranskat)abstract
    • NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
  •  
8.
  • Abdo, A. A., et al. (författare)
  • DETECTION OF HIGH-ENERGY GAMMA-RAY EMISSION DURING THE X-RAY FLARING ACTIVITY IN GRB 100728A
  • 2011
  • Ingår i: The Astrophysical Journal Letters. - 2041-8205. ; 734:2, s. L27-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the simultaneous Swift and Fermi observations of the bright GRB 100728A and its afterglow. The early X-ray emission is dominated by a vigorous flaring activity continuing until 1 ks after the burst. In the same time interval, high-energy emission is significantly detected by the Fermi/Large Area Telescope. Marginal evidence of GeV emission is observed up to later times. We discuss the broadband properties of this burst within both the internal and external shock scenarios, with a particular emphasis on the relation between X-ray flares, the GeV emission, and a continued long-duration central engine activity as their power source.
  •  
9.
  • Ajello, M., et al. (författare)
  • A Decade of Gamma-Ray Bursts Observed by Fermi-LAT : The Second GRB Catalog
  • 2019
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 878:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Area Telescope (LAT) aboard the Fermi spacecraft routinely observes high-energy emission from gamma-ray bursts (GRBs). Here we present the second catalog of LAT-detected GRBs, covering the first 10 yr of operations, from 2008 to 2018 August 4. A total of 186 GRBs are found; of these, 91 show emission in the range 30-100 MeV (17 of which are seen only in this band) and 169 are detected above 100 MeV. Most of these sources were discovered by other instruments (Fermi/GBM, Swift/BAT, AGILE, INTEGRAL) or reported by the Interplanetary Network (IPN); the LAT has independently triggered on four GRBs. This catalog presents the results for all 186 GRBs. We study onset, duration, and temporal properties of each GRB, as well as spectral characteristics in the 100 MeV-100 GeV energy range. Particular attention is given to the photons with the highest energy. Compared with the first LAT GRB catalog, our rate of detection is significantly improved. The results generally confirm the main findings of the first catalog: the LAT primarily detects the brightest GBM bursts, and the high-energy emission shows delayed onset as well as longer duration. However, in this work we find delays exceeding 1 ks and several GRBs with durations over 10 ks. Furthermore, the larger number of LAT detections shows that these GRBs not only cover the high-fluence range of GBM-detected GRBs but also sample lower fluences. In addition, the greater number of detected GRBs with redshift estimates allows us to study their properties in both the observer and rest frames. Comparison of the observational results with theoretical predictions reveals that no model is currently able to explain all results, highlighting the role of LAT observations in driving theoretical models.
  •  
10.
  • Angelopoulos, V., et al. (författare)
  • First Results from the THEMIS Mission
  • 2008
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 141:1-4, s. 453-476
  • Forskningsöversikt (refereegranskat)abstract
    • THEMIS was launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. During the first seven months of the mission the five satellites coasted near their injection orbit to avoid differential precession in anticipation of orbit placement, which started in September 2007 and led to a commencement of the baseline mission in December 2007. During the coast phase the probes were put into a string-of-pearls configuration at 100 s of km to 2 R-E along-track separations, which provided a unique view of the magnetosphere and enabled an unprecedented dataset in anticipation of the first tail season. In this paper we describe the first THEMIS substorm observations, captured during instrument commissioning on March 23, 2007. THEMIS measured the rapid expansion of the plasma sheet at a speed that is commensurate with the simultaneous expansion of the auroras on the ground. These are the first unequivocal observations of the rapid westward expansion process in space and on the ground. Aided by the remote sensing technique at energetic particle boundaries and combined with ancillary measurements and MHD simulations, they allow determination and mapping of space currents. These measurements show the power of the THEMIS instrumentation in the tail and the radiation belts. We also present THEMIS Flux Transfer Events (FTE) observations at the magnetopause, which demonstrate the importance of multi-point observations there and the quality of the THEMIS instrumentation in that region of space.
  •  
11.
  • Soucek, J., et al. (författare)
  • EMC Aspects Of Turbulence Heating Observer (THOR) Spacecraft
  • 2016
  • Ingår i: Proceedings Of 2016 Esa Workshop On Aerospace Emc (Aerospace Emc). - : Institute of Electrical and Electronics Engineers (IEEE). - 9789292213039
  • Konferensbidrag (refereegranskat)abstract
    • Turbulence Heating ObserveR (THOR) is a spacecraft mission dedicated to the study of plasma turbulence in near-Earth space. The mission is currently under study for implementation as a part of ESA Cosmic Vision program. THOR will involve a single spinning spacecraft equipped with state of the art instruments capable of sensitive measurements of electromagnetic fields and plasma particles. The sensitive electric and magnetic field measurements require that the spacecraft-generated emissions are restricted and strictly controlled; therefore a comprehensive EMC program has been put in place already during the study phase. The THOR study team and a dedicated EMC working group are formulating the mission EMC requirements already in the earliest phase of the project to avoid later delays and cost increases related to EMC. This article introduces the THOR mission and reviews the current state of its EMC requirements.
  •  
12.
  • Tao, J. B., et al. (författare)
  • Kinetic instabilities in the lunar wake : ARTEMIS observations
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A03106-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission is a new two-probe lunar mission derived from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission. On 13 February 2010, one of the two probes, ARTEMIS P1 (formerly THEMIS-B), made the first lunar wake flyby of the mission. We present detailed analysis of the electrostatic waves observed on the outbound side of the flyby that were associated with electron beams. Halekas et al. (2011) derived a net potential across the lunar wake from observations and suggested that the net potential generated the observed electron beams and the electron beams in turn excited the observed electrostatic waves due to kinetic instabilities. The wavelengths and velocities of the electrostatic waves are estimated, using high-resolution electric field instrument data with cross-spectrum analysis and cross-correlation analysis. In general, the estimated wavelengths vary from a few hundred meters to a couple of thousand meters. The estimated phase velocities are on the order of 1000 km s(-1). In addition, we perform 1-D Vlasov simulations to help identify the mode of the observed electrostatic waves. We conclude that the observed electrostatic waves are likely on the electron beam mode branch.
  •  
13.
  • Tao, J. B., et al. (författare)
  • A model of electromagnetic electron phase-space holes and its application
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A11213-
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron phase-space holes (EHs) are indicators of nonlinear activities in space plasmas. Most often they are observed as electrostatic signals, but recently Andersson et al. [2009] reported electromagnetic EHs observed by the THEMIS mission in the Earth's plasma sheet. As a follow-up to Andersson et al. [2009], this paper presents a model of electromagnetic EHs where the delta E x B(0) drift of electrons creates a net current. The model is examined with test-particle simulations and compared to the electromagnetic EHs reported by Andersson et al. [2009]. As an application of the model, we introduce a more accurate method than the simplified Lorentz transformation of Andersson et al. [2009] to derive EH velocity (v(EH)). The sizes and potentials of EHs are derived from v(EH), so an accurate derivation of v(EH) is important in analyzing EHs. In general, our results are qualitatively consistent with those of Andersson et al. [2009] but generally with smaller velocities and sizes.
  •  
14.
  • Andersson, L., et al. (författare)
  • New Features of Electron Phase Space Holes Observed by the THEMIS Mission
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 102:22, s. 225004-
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of electron phase-space holes (EHs) in Earth's plasma sheet by the THEMIS satellites include the first detection of a magnetic perturbation (delta B-parallel to) parallel to the ambient magnetic field (B-0). EHs with a detectable delta B-parallel to have several distinguishing features including large electric field amplitudes, a magnetic perturbation perpendicular to B-0, high speeds (similar to 0.3c) along B-0, and sizes along B-0 of tens of Debye lengths. These EHs have a significant center potential (Phi similar to k(B)T(e)/e), suggesting strongly nonlinear behavior nearby such as double layers or magnetic reconnection.
  •  
15.
  • Ergun, R. E., et al. (författare)
  • Observations of Double Layers in Earth's Plasma Sheet
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 102:15, s. 155002-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first direct observations of parallel electric fields (E-parallel to) carried by double layers (DLs) in the plasma sheet of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E-parallel to signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current sheet, and in plasma sheet boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's plasma sheet.
  •  
16.
  • Johansson, T., et al. (författare)
  • Observation of an inner magnetosphere electric field associated with a BBF-like flow and PBIs
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:4, s. 1489-1500
  • Tidskriftsartikel (refereegranskat)abstract
    • Themis E observed a perpendicular (to the magnetic field) electric field associated with an Earthward plasma flow at XGSM=-9.6 R-E on 11 January 2008. The electric field observation resembles Cluster observations closer to Earth in the auroral region. The fast plasma flow shared some characteristics with bursty bulk flows (BBFs) but did not meet the usual criteria in maximum velocity and duration to qualify as one. Themis C observed the same flow further downtail but Themis D, separated by only 1 R-E in azimuthal direction from Themis E, did not. At the time of the electric field and ion flow event, the all-sky imager and ground-based magnetometer at Rankin Inlet observed Poleward Boundary Intensifications (PBIs) and a negative bay signature. None of the other Themis ground-based observatories recorded any significant auroral or magnetic field activity, indicating that this was a localized activity. The joint Themis in situ and ground-based observations suggest that the two observations are related. This indicates that auroral electric fields can extend to regions much farther out than previously seen in Cluster observations.
  •  
17.
  • Nishimura, Y., et al. (författare)
  • Identifying the Driver of Pulsating Aurora
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 330:6000, s. 81-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulsating aurora, a spectacular emission that appears as blinking of the upper atmosphere in the polar regions, is known to be excited by modulated, downward-streaming electrons. Despite its distinctive feature, identifying the driver of the electron precipitation has been a long-standing problem. Using coordinated satellite and ground-based all-sky imager observations from the THEMIS mission, we provide direct evidence that a naturally occurring electromagnetic wave, lower-band chorus, can drive pulsating aurora. Because the waves at a given equatorial location in space correlate with a single pulsating auroral patch in the upper atmosphere, our findings can also be used to constrain magnetic field models with much higher accuracy than has previously been possible.
  •  
18.
  • Bortnik, J., et al. (författare)
  • An Observation Linking the Origin of Plasmaspheric Hiss to Discrete Chorus Emissions
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 324:5928, s. 775-778
  • Tidskriftsartikel (refereegranskat)abstract
    • A long-standing problem in the field of space physics has been the origin of plasmaspheric hiss, a naturally occurring electromagnetic wave in the high-density plasmasphere (roughly within 20,000 kilometers of Earth) that is known to remove the high-energy Van Allen Belt electrons that pose a threat to satellites and astronauts. A recent theory tied the origin of plasmaspheric hiss to a seemingly different wave in the outer magnetosphere, but this theory was difficult to test because of a challenging set of observational requirements. Here we report on the experimental verification of the theory, made with a five-satellite NASA mission. This confirmation will allow modeling of plasmaspheric hiss and its effects on the high-energy radiation environment.
  •  
19.
  • Eriksson, Stefan, et al. (författare)
  • Lobe cell convection and field-aligned currents poleward of the region 1 current system
  • 2002
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 107:A8
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] We present a case and statistical study of plasma convection in the Northern Hemisphere during summer conditions using electric field, magnetic field, and particle data taken during dawn-dusk directed orbits of the FAST satellite. To our knowledge, this set provides the most comprehensive combination of data as yet presented in support of lobe cell convection from an ionospheric perspective this far from the noon sector. In particular, we study the current systems and convection patterns for all passes in July 1997 that show evidence for six large-scale field-aligned currents (FACs) rather than the usual system of four FACs associated with the region 1/region 2 current systems. A total of 71 passes out of 232 in the study had the extra pair of FACs. The extra pair of FACs in 30 of the 71 cases lies either on the dawnside or on the duskside of the noon-midnight meridian, and their position is strongly correlated with the polarity of the IMF By (negative and positive, respectively). This is consistent with the IMF dependence of a three-cell convection pattern of coexisting merging, viscous, and lobe-type convection cells. The occurrence of the asymmetric FAC pair was also strongly linked to conditions of IMF |B-y/B-z | > 1. The extra pair of FACs in these cases was clearly associated with the lobe cell of the three-cell convection system. The remaining 41 cases had the pair of FACs straddling the noon-midnight meridian. The extra pair of FACs was often (20 cases out of 30) observed at magnetic local times more than three hours away from noon, rather than being confined to regions near noon and the typical location of the cusp. Such a current system consisting of a pair of FACs poleward of the nearest region 1 current is consistent with the IMF B-y-dependent global MHD model developed by Ogino et al. [1986] for southward IMF conditions, as well as with other magnetospheric and ionospheric convection models that include the effects of merging occuring simultaneously at both low-latitude dayside and high-latitude lobe and flank magnetopause reconnection sites. Finally, the presence of the additional FACs and three-cell convection well away from noon show that the entire dayside ionosphere is affected by IMF-dependent processes, rather than only a limited region around noon.
  •  
20.
  • Matsui, H., et al. (författare)
  • Characteristics of storm time electric fields in the inner magnetosphere derived from Cluster data
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A11215-
  • Tidskriftsartikel (refereegranskat)abstract
    • Storm-time electric fields in the inner magnetosphere measured by Cluster are reported in this study. First, we show two events around the time when Dst index is at a minimum. The electric field possibly related to subauroral ion drifts and/or undershielding is measured inside the inner edge of the electron plasma sheet in the eveningside. For the second event observed in the nightside, the electric field is partly related to dipolarization and is considered as inductive. An electric field without coincident magnetic signatures is also observed. Spatial coherence of the electric field is not large when we check multispacecraft data. It is inferred that the electric field in the magnetotail penetrates inside the region 1 current, while it is not clear about the electric field within the region 2 current from our data. Then superposed epoch analyses using 71 storms are performed. Electric fields at R = 3.5-6R(E) and less than 25 degrees of magnetic latitudes are enhanced around the minimum Dst at all magnetic local times. Electric fields during the recovery phase decay on a time scale shorter than that of Dst index, which could be interpreted in terms of the relation between electric field and ring current during that storm phase. AC electric fields are generally larger than DC electric fields, indicating that the former component might play some role in accelerating ring current particles. These results will be useful to update our empirical electric field model.
  •  
21.
  • Nishimura, Y., et al. (författare)
  • Estimation of magnetic field mapping accuracy using the pulsating aurora-chorus connection
  • 2011
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 38, s. L14110-
  • Tidskriftsartikel (refereegranskat)abstract
    • Although magnetic field models are widely used in magnetosphere-ionosphere coupling studies to perform field-line mapping, their accuracy has been difficult to estimate experimentally. Taking advantage of the high correlation between lower-band chorus and pulsating aurora, we located the THEMIS spacecraft footprint within similar to km accuracy and calculated the differences from mappings given in widely-used Tsyganenko models. Using 13 conjunctions of the THEMIS spacecraft and ground-based imagers, we found that the Tsyganenko model footprints were located within 1 degrees-2 degrees magnetic latitude and 0.1-0.2 h magnetic local time of our derived footprint. The deviation between the footprints has a consistent dependence on geomagnetic activity. Our results showed that the real magnetic field tends to be less stretched than that in the Tsyganenko models during quiet times and comparable to or more stretched during disturbed times. This approach can be used to advance modeling of field lines that connect to the near-Earth plasma sheet.
  •  
22.
  • Nishimura, Y., et al. (författare)
  • Multievent study of the correlation between pulsating aurora and whistler mode chorus emissions
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A11221-
  • Tidskriftsartikel (refereegranskat)abstract
    • A multievent study was performed using conjugate measurements of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and an all-sky imager during periods of intense lower-band chorus waves. The thirteen identified cases support our previous finding, based on two events, that the intensity modulation of lower-band chorus near the magnetic equator is highly correlated with quasiperiodic pulsating auroral emissions near the spacecraft's magnetic footprint, indicating that lower-band chorus is the driver of the pulsating aurora. Furthermore, we identified a fortuitous measurement made simultaneously by two THEMIS spacecraft with small spatial separation. The two spacecraft were found to be located in a single pulsating chorus patch and the spacecraft footprints were in the same pulsating auroral patch when intense chorus bursts were measured simultaneously, whereas only one of the spacecraft's footprints was in a patch when the other spacecraft did not detect intense chorus. On the basis of this event, we can estimate the pulsating chorus patch size by mapping the pulsating auroral patches from the ionosphere toward the magnetic equator, giving a roughly circular region of similar to 5000 km diameter for corresponding azimuthally elongated patches with similar to 100 km size in the ionosphere. Using a ray-tracing-based calculation of the divergence of chorus raypaths from a point source, together with the corresponding resonant energies, we found that the chorus patch size is most probably not a result of ray divergence but a property of the wave excitation region.
  •  
23.
  • Cully, Christopher, et al. (författare)
  • THEMIS observations of long-lived regions of large-amplitude whistler waves in the inner magnetosphere
  • 2008
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 35:17, s. L17S16-
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent reports of large-amplitude whistler waves (> 100 mV/m) in the radiation belts have intensified interest in the role of whistler waves in accelerating radiation belt electrons to MeV energies. Several critical parameters for addressing this issue have not previously been observed, including the occurrence frequency, spatial extent and longevity of regions of large-amplitude whistlers. The THEMIS mission, with multiple satellites in a near-equatorial orbit, offers an excellent opportunity to study these waves. We use data from the Electric Field Instrument (EFI) to show that in the dawn-side radiation belts, especially near L-shells from 3.5 to 5.5, the probability distribution of wave activity has a significant high-amplitude tail and is hence not well-described by long-term time averages. Regions of enhanced wave activity exhibit four-second averaged wave power above 1 mV/m and sub-second bursts up to several hundred mV/m. These regions are spatially localized to at most several hours of local time azimuthally, but can persist in the same location for several days. With large regions of space persistently covered by bursty, large-amplitude waves, the mechanisms and rates of radiation belt electron acceleration may need to be reconsidered.
  •  
24.
  • Lotekar, A., et al. (författare)
  • Multisatellite MMS Analysis of Electron Holes in the Earth's Magnetotail : Origin, Properties, Velocity Gap, and Transverse Instability
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a statistical analysis of more than 2,400 electrostatic solitary waves interpreted as electron holes (EH) measured aboard at least three Magnetospheric Multiscale (MMS) spacecraft in the Earth's magnetotail. The velocities of EHs are estimated using the multispacecraft interferometry. The EH velocities in the plasma rest frame are in the range from just a few km/s, which is much smaller than ion thermal velocity V-Ti, up to 20,000 km/s, which is comparable to electron thermal velocity V-Te. We argue that fast EHs with velocities larger than about 0.1V(Te) are produced by bump-on-tail instabilities, while slow EHs with velocities below about 0.05V(Te) can be produced by warm bistream and, probably, Buneman-type instabilities. We show that typically fast and slow EHs do not coexist, indicating that the instabilities producing EHs of different types operate independently. We have identified a gap in the distribution of EH velocities between V-Ti and 2V(Ti), which is considered to be the evidence for self-acceleration (Zhou & Hutchinson, 2018) or ion Landau damping of EHs. Parallel spatial scales and amplitudes of EHs are typically between lambda(D) and 10 lambda(D) and between 10(-3) T-e and 0.1 T-e, respectively. We show that electrostatic potential amplitudes of EHs are below the threshold of the transverse instability and highly likely restricted by the nonlinear saturation criterion of electron streaming instabilities seeding electron hole formation: e Phi(0)less than or similar to me pi(2)d(parallel to)(2), where pi = min(gamma, 1.5 omega(ce)), where gamma is the increment of instabilities seeding EH formation, while pi(ce) is electron cyclotron frequency. The implications of the presented results are discussed.
  •  
25.
  • Wang, R., et al. (författare)
  • Electrostatic Turbulence and Debye-scale Structures in Collisionless Shocks
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : IOP PUBLISHING LTD. - 2041-8205 .- 2041-8213. ; 889:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present analysis of more than 100 large-amplitude bipolar electrostatic structures in a quasi-perpendicular supercritical Earth's bow shock crossing, measured by the Magnetospheric Multiscale spacecraft. The occurrence of the bipolar structures is shown to be tightly correlated with magnetic field gradients in the shock transition region. The bipolar structures have negative electrostatic potentials and spatial scales of a few Debye lengths. The bipolar structures propagate highly oblique to the shock normal with velocities (in the plasma rest frame) of the order of the ion-acoustic velocity. We argue that the bipolar structures are ion phase space holes produced by the two-stream instability between incoming and reflected ions. This is the first identification of the ion two-stream instability in collisionless shocks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy