SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bounsaythip Catherine) "

Search: WFRF:(Bounsaythip Catherine)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aura, Anna-Marja, et al. (author)
  • Drug metabolome of the simvastatin formed by human intestinal microbiota in vitro
  • 2011
  • In: Molecular Biosystems. - : Royal Society of Chemistry. - 1742-206X .- 1742-2051. ; 7:2, s. 437-446
  • Journal article (peer-reviewed)abstract
    • The human colon contains a diverse microbial population which contributes to degradation and metabolism of food components. Drug metabolism in the colon is generally poorly understood. Metabolomics techniques and in vitro colon models are now available which afford detailed characterization of drug metabolites in the context of colon metabolism. The aim of this work was to identify novel drug metabolites of Simvastatin (SV) by using an anaerobic human in vitro colon model at body temperature coupled with systems biology platform, excluding the metabolism of the host liver and intestinal epithelia. Comprehensive two-dimensional gas chromatography with a time-of-flight mass spectrometry (GC×GC-TOFMS) was used for the metabolomic analysis. Metabolites showing the most significant differences in the active faecal suspension were elucidated in reference with SV fragmentation and compared with controls: inactive suspension or buffer with SV, or with active suspension alone. Finally, time courses of selected metabolites were investigated. Our data suggest that SV is degraded by hydrolytic cleavage of methylbutanoic acid from the SV backbone. Metabolism involves demethylation of dimethylbutanoic acid, hydroxylation/dehydroxylation and β-oxidation resulting in the production of 2-hydroxyisovaleric acid (3-methyl-2-hydroxybutanoic acid), 3-hydroxybutanoic acid and lactic acid (2-hydroxypropanoic acid), and finally re-cyclisation of heptanoic acid (possibly de-esterified and cleaved methylpyranyl arm) to produce cyclohexanecarboxylic acid. Our study elucidates a pathway of colonic microbial metabolism of SV as well as demonstrates the applicability of the in vitro colon model and metabolomics to the discovery of novel drug metabolites from drug response profiles.
  •  
2.
  • Gopalacharyulu, Peddinti V., et al. (author)
  • An integrative approach for biological data mining and visualisation
  • 2008
  • In: International Journal of Data Mining and Bioinformatics. - : Inderscience Publishers. - 1748-5673 .- 1748-5681. ; 2:1, s. 54-77
  • Journal article (peer-reviewed)abstract
    • The emergence of systems biology necessitates development of platforms to organise and interpret plentitude of biological data. We present a system to integrate data across multiple bioinformatics databases and enable mining across various conceptual levels of biological information. The results are represented as complex networks. Context dependent mining of these networks is achieved by use of distances. Our approach is demonstrated with three applications: full metabolic network retrieval with network topology study, exploration of properties and relationships of a set of selected proteins, and combined visualisation and exploration of gene expression data with related pathways and ontologies.
  •  
3.
  • Gopalacharyulu, Peddinti V., et al. (author)
  • Data integration and visualization system for enabling conceptual biology
  • 2005
  • In: Bioinformatics. - : Oxford University Press. - 1367-4803 .- 1367-4811 .- 1460-2059. ; 21 Suppl 1, s. i177-i185
  • Journal article (peer-reviewed)abstract
    • MOTIVATION: Integration of heterogeneous data in life sciences is a growing and recognized challenge. The problem is not only to enable the study of such data within the context of a biological question but also more fundamentally, how to represent the available knowledge and make it accessible for mining.RESULTS: Our integration approach is based on the premise that relationships between biological entities can be represented as a complex network. The context dependency is achieved by a judicious use of distance measures on these networks. The biological entities and the distances between them are mapped for the purpose of visualization into the lower dimensional space using the Sammon's mapping. The system implementation is based on a multi-tier architecture using a native XML database and a software tool for querying and visualizing complex biological networks. The functionality of our system is demonstrated with two examples: (1) A multiple pathway retrieval, in which, given a pathway name, the system finds all the relationships related to the query by checking available metabolic pathway, transcriptional, signaling, protein-protein interaction and ontology annotation resources and (2) A protein neighborhood search, in which given a protein name, the system finds all its connected entities within a specified depth. These two examples show that our system is able to conceptually traverse different databases to produce testable hypotheses and lead towards answers to complex biological questions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view