SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boxall Alistair) "

Sökning: WFRF:(Boxall Alistair)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brodin, Tomas, et al. (författare)
  • The urgent need for designing greener drugs
  • 2024
  • Ingår i: Nature Sustainability. - 2398-9629.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The pervasive contamination of ecosystems with active pharmaceutical ingredients poses a serious threat to biodiversity, ecosystem services and public health. Urgent action is needed to design greener drugs that maintain efficacy but also minimize environmental impact.
  •  
2.
  • Cains, Mariana, et al. (författare)
  • Environmental Management Cycles for Chemicals and Climate Change, EMC4: A new conceptual framework contextualizing climate and chemical risk assessment and management
  • 2024
  • Ingår i: Integrated environmental assessment and management. - 1551-3777 .- 1551-3793. ; 20:2, s. 433-453
  • Tidskriftsartikel (refereegranskat)abstract
    • The Environmental Management Cycle for Chemicals and Climate Change (EMC4)is a suggestedconceptualframework for integrating climate change aspects into chemical risk management. The interaction of climate change and chemical risk brings together complex systems that are imperfectly understood by science. Making management decisions in this context is therefore difficult and often exacerbated by a lack of data. The consequences of poor decision making can be significant for both environmental and human health. This paper reflects on the ways in which existing chemical management systems consider climatechange and proposes theEMC4conceptual framework that isa tool for decision makersoperating at different spatial scales. Also presented are keyquestions raised by the tool to help the decision maker identify chemical risks from climate change, management options and, importantly, the different types of actors that are instrumental in managing that risk.Case studies showing decision making at different spatial scalesare also presentedhighlighting the conceptual framework’s applicability to multiple scales.The United Nations Environment Programme’s development of an intergovernmental Science Policy Panelon Chemicals and Wastehas presented an opportunity to promote and generate research highlighting the impacts of chemicals and climate changeinterlinkages.
  •  
3.
  • Hader, John D., et al. (författare)
  • Enabling forecasts of environmental exposure to chemicals in European agriculture under global change
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 840
  • Forskningsöversikt (refereegranskat)abstract
    • European agricultural development in the 21st century will be affected by a host of global changes, including climate change, changes in agricultural technologies and practices, and a shift towards a circular economy. The type and quantity of chemicals used, emitted, and cycled through agricultural systems in Europe will change, driven by shifts in the use patterns of pesticides, veterinary pharmaceuticals, reclaimed wastewater used for irrigation, and biosolids. Climate change will also impact the chemical persistence, fate, and transport processes that dictate environmental exposure. Here, we review the literature to identify research that will enable scenario-based forecasting of environmental exposures to organic chemicals in European agriculture under global change. Enabling exposure forecasts requires understanding current and possible future 1.) emissions, 2.) persistence and transformation, and 3.) fate and transport of agricultural chemicals. We discuss current knowledge in these three areas, the impact global change drivers may have on them, and we identify knowledge and data gaps that must be overcome to enable predictive scenario-based forecasts of environmental exposure under global change. Key research gaps identified are: improved understanding of relationships between global change and chemical emissions in agricultural settings; better understanding of environment-microbe interactions in the context of chemical degradation under future conditions; and better methods for downscaling climate change-driven intense precipitation events for chemical fate and transport modelling. We introduce a set of narrative Agricultural Chemical Exposure (ACE) scenarios — augmenting the IPCC's Shared Socio-economic Pathways (SSPs) — as a framework for forecasting chemical exposure in European agriculture. The proposed ACE scenarios cover a plausible range of optimistic to pessimistic 21st century development pathways. Filling the knowledge and data gaps identified within this study and using the ACE scenario approach for chemical exposure forecasting will support stakeholder planning and regulatory intervention strategies to ensure European agricultural practices develop in a sustainable manner.
  •  
4.
  • Kookana, Rai, et al. (författare)
  • Nanopesticides: Guiding principles for regulatory evaluation of environmental risks
  • 2014
  • Ingår i: Journal of Agricultural and Food Chemistry. - : American Chemical Society (ACS). - 0021-8561 .- 1520-5118. ; 62:19, s. 4227-4240
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanopesticides or nano plant protection products represent an emerging technological development that, in relation to pesticide use, could offer a range of benefits including increased efficacy, durability, and a reduction in the amounts of active ingredients that need to be used. A number of formulation types have been suggested including emulsions (e.g., nanoemulsions), nanocapsules (e.g., with polymers), and products containing pristine engineered nanoparticles, such as metals, metal oxides, and nanoclays. The increasing interest in the use of nanopesticides raises questions as to how to assess the environmental risk of these materials for regulatory purposes. Here, the current approaches for environmental risk assessment of pesticides are reviewed and the question of whether these approaches are fit for purpose for use on nanopesticides is addressed. Potential adaptations to existing environmental risk assessment tests and procedures for use with nanopesticides are discussed, addressing aspects such as analysis and characterization, environmental fate and exposure assessment, uptake by biota, ecotoxicity, and risk assessment of nanopesticides in aquatic and terrestrial ecosystems. Throughout, the main focus is on assessing whether the presence of the nanoformulation introduces potential differences relative to the conventional active ingredients. The proposed changes in the test methodology, research priorities, and recommendations would facilitate the development of regulatory approaches and a regulatory framework for nanopesticides.
  •  
5.
  • Pistocchi, Alberto, et al. (författare)
  • European scale assessment of the potential of ozonation and activated carbon treatment to reduce micropollutant emissions with wastewater
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 848
  • Tidskriftsartikel (refereegranskat)abstract
    • Micropollutants (MPs) in wastewater pose a growing concern for their potential adverse effects on the receiving aquatic environment, and some countries have started requiring that wastewater treatment plants remove them to a certain extent. Broad spectrum advanced treatment processes, such as ozonation, activated carbon or their combination, are expected to yield a significant reduction in the toxicity of effluents. Here we quantify the reduction of effluent toxicity potentially achieved by implementing these advanced treatment solutions in a selection of European wastewater treatment plants. To this end, we refer to a list of “total pollution proxy substances” (TPPS) composed of 1337 chemicals commonly found in wastewater effluents according to a compilation of datasets of measured concentrations. We consider these substances as an approximation of the “chemical universe” impinging on the European wastewater system. We evaluate the fate of the TPPS in conventional and advanced treatment plants using a compilation of experimental physicochemical properties that describe their sorption, volatilization and biodegradation during activated sludge treatment, as well as known removal efficiency in ozonation and activated carbon treatment, while filling the gaps through in silico prediction models.We estimate that the discharge of micropollutants with wastewater effluents in the European Union has a cumulative MP toxicity to the environment equal to the discharge of untreated wastewater of ca. 160 million population equivalents (PE), i.e. about 30 % of the generated wastewater in the EU. If all plants above a capacity of 100,000 PE were equipped with advanced treatment, we show that this load would be reduced to about 95 million PE. In addition, implementing advanced treatment in wastewater plants above 10,000 PE discharging to water bodies with an average dilution ratio smaller than 10 would yield a widespread improvement in terms of exposure of freshwater ecosystems to micropollutants, almost halving the part of the stream network exposed to the highest toxic risks.Our analysis provides background for a cost-effectiveness appraisal of advanced treatment “at the end of the pipe”, which could lead to optimized interventions. This should not be regarded as a stand-alone solution, but as a complement to policies for the control of emissions at the source for the most problematic MPs.
  •  
6.
  • Singer, Andrew C, et al. (författare)
  • Meeting Report : Risk Assessment of Tamiflu Use Under Pandemic Conditions
  • 2008
  • Ingår i: Environmental Health Perspectives. ; 116:11, s. 1563-7
  • Tidskriftsartikel (refereegranskat)abstract
    • On 3 October 2007, 40 participants with diverse expertise attended the workshop Tamiflu and the Environment: Implications of Use under Pandemic Conditions to assess the potential human health impact and environmental hazards associated with use of Tamiflu during an influenza pandemic. Based on the identification and risk-ranking of knowledge gaps, the consensus was that oseltamivir ethylester-phosphate (OE-P) and oseltamivir carboxylate (OC) were unlikely to pose an ecotoxicologic hazard to freshwater organisms. OC in river water might hasten the generation of OC-resistance in wildfowl, but this possibility seems less likely than the potential disruption that could be posed by OC and other pharmaceuticals to the operation of sewage treatment plants. The workgroup members agreed on the following research priorities: a) available data on the ecotoxicology of OE-P and OC should be published ; b) risk should be assessed for OC-contaminated river water generating OC-resistant viruses in wildfowl ; c) sewage treatment plant functioning due to microbial inhibition by neuraminidase inhibitors and other antimicrobials used during a pandemic should be investigated ; and d) realistic worst-case exposure scenarios should be developed. Additional modeling would be useful to identify localized areas within river catchments that might be prone to high pharmaceutical concentrations in sewage treatment plant effluent. Ongoing seasonal use of Tamiflu in Japan offers opportunities for researchers to assess how much OC enters and persists in the aquatic environment.
  •  
7.
  • Tiede, Karen, et al. (författare)
  • Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles.
  • 2009
  • Ingår i: Journal of chromatography. A. - : Elsevier BV. - 0021-9673. ; 1216:3, s. 503-9
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an increasing concern over the safety of engineered nanoparticles (ENPs) to humans and the environment and it is likely that the environmental risks of these particles will have to be tested under regulatory schemes such as REACH. Due to their unique properties and the fact that their detection and characterisation in complex matrices is challenging, existing analytical methods and test approaches for assessing environmental risk may not be appropriate for ENPs. In this article we discuss the challenges associated with the testing of ENPs to generate data on persistence, mobility, bioavailability and ecotoxicity in the environment. It is essential that careful consideration is given to the selection of the test material, the test system (including test vessels and study media) and the test exposure conditions. During a study it is critical that not only the concentration of the ENP is determined but also its characteristics (e.g. size, shape, degree of aggregation and dissolution). A range of analytical techniques is available including microscopy-based approaches (e.g transmission and scanning electron microscopy), dynamic light scattering, and size separation approaches (e.g. field flow fractionation and hydrodynamic chromatography) coupled to detection methods such as inductively coupled plasma MS. All of these have their disadvantages: some are unable to distinguish between ENPs and natural interferences; some techniques require sample preparation approaches that can introduce artefacts; and others are complex and time-consuming. A combination of techniques is therefore needed. Our knowledge in this area is still limited, and co-ordinated research is required to gain a better understanding of the factors and processes affecting ENP fate and effects in the environment as well as to develop more usable, robust and sensitive methods for characterisation and detection of ENPs in environmental systems.
  •  
8.
  • Wilkinson, John L., et al. (författare)
  • Pharmaceutical pollution of the world's rivers
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Boxall, Alistair B. ... (5)
Fick, Jerker (1)
Hassellöv, Martin, 1 ... (1)
Molander, Sverker, 1 ... (1)
Sobek, Anna (1)
Accinelli, Cesare (1)
visa fler...
Saccà, Maria Ludovic ... (1)
McLachlan, Michael S ... (1)
Good, David (1)
Iqbal, Muhammad (1)
Brack, Werner (1)
Slobodnik, Jaroslav (1)
Fatta-Kassinos, Desp ... (1)
Cousins, Ian T. (1)
Adell, Aiko D. (1)
Kümmerer, Klaus (1)
Cornelis, Geert, 197 ... (1)
Halldorsson, Halldor ... (1)
Garric, Jeanne (1)
Brodin, Tomas (1)
Milakovic, Milena (1)
Udikovic-Kolic, Niko ... (1)
Kidd, Karen A. (1)
Tyler, Charles R. (1)
Cerveny, Daniel (1)
Michelangeli, Marcus (1)
McCallum, Erin S. (1)
Brooks, Bryan W. (1)
Wong, Bob B.M. (1)
Metian, Marc (1)
MacLeod, Matthew, 19 ... (1)
Kah, Melanie (1)
Lyberatos, Gerasimos (1)
van Wezel, Annemarie (1)
van den Brink, Paul ... (1)
Martin, Jake M., 199 ... (1)
Poté, John (1)
Breitbarth, Eike (1)
Bertram, Michael G., ... (1)
Arnold, Kathryn E. (1)
Jörg, Manuela (1)
Lertxundi, Unax (1)
May, Lauren T. (1)
Orive, Gorka (1)
Lynch, Iseult (1)
Cains, Mariana (1)
Desrousseau, Alizée ... (1)
Molina-Navarro, Euge ... (1)
Sussams, Julia (1)
Critto, Andrea (1)
visa färre...
Lärosäte
Stockholms universitet (4)
Göteborgs universitet (2)
Umeå universitet (1)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy