SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brüchert Volker) "

Sökning: WFRF:(Brüchert Volker)

  • Resultat 1-25 av 96
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ahmed, Engy, et al. (författare)
  • Mineral Type Structures Soil Microbial Communities
  • 2017
  • Ingår i: Geomicrobiology Journal. - : Taylor & Francis. - 0149-0451 .- 1521-0529. ; 34:6, s. 538-545
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil microorganisms living in close contact with minerals play key roles in the biogeochemical cycling of elements, soil formation, and plant nutrition. Yet, the composition of microbial communities inhabiting the mineralosphere (i.e., the soil surrounding minerals) is poorly understood. Here, we explored the composition of soil microbial communities associated with different types of minerals in various soil horizons. To this effect, a field experiment was set up in which mineral specimens of apatite, biotite, and oligoclase were buried in the organic, eluvial, and upper illuvial horizons of a podzol soil. After an incubation period of two years, the soil attached to the mineral surfaces was collected, and microbial communities were analyzed by means of Illumina MiSeq sequencing of the 16S (prokaryotic) and 18S (eukaryotic) ribosomal RNA genes. We found that both composition and diversity of bacterial, archaeal, and fungal communities varied across the different mineral surfaces, and that mineral type had a greater influence on structuring microbial assemblages than soil horizon. Thus, our findings emphasize the importance of mineral surfaces as ecological niches in soils.
  •  
3.
  •  
4.
  • Ahmed, Engy, et al. (författare)
  • The Role of Microorganisms in the diversity and distribution of siderophores in Podzolic Forest Soil
  • 2013
  • Ingår i: Mineralogical magazine. - 0026-461X .- 1471-8022. ; 77:2, s. 161--208(48)
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Iron is a key component of the chemical architecture of the biosphere. Due to the low bioavailability of iron in the environment, microorganisms have developed specific uptake strategies. The most important one is the production of siderophores, which are operationally defined as low-molecular-mass biogenic Fe (III)-binding compounds which may greatly increase bioavailability of Fe [1]. One of the primary biogeochemical functions of siderophores is therefore to increase Fe bioavailability by promoting the dissolution of iron-bearing minerals [2]. This study aims to understand the role of microorganisms in the chemical diversity and distribution of siderophores in podzol soil and how this diversity can contribute to the bioavailability of Fe in forest soil.Soil samples were collected from an experimental site in the area of Bispgården in central Sweden (63°07′N, 16°70′E) from the O (organic), E (eluvial), B1 (upper illuvial), and C (mineral) horizons. Concentration and chemical composition of dissolved and adsorbed siderophores in the soil samples were determined using colorimetric assays and high-performance liquid chromatography.The highest siderophore concentrations were found in the O layer and thereafter decreased by depth. Concentrations of dissolved hydroxamate, catecholate and carboxylate siderophores were up to 84, 17 and 0.2 nmol/ g soil, respectively. In contrast, concentrations of adsorbed hydroxamates, catecholates and carboxylates were only up to 1.8, 3 and 0.2 nmol/ g soil, respectively.Siderophore-producing microorganisms were isolated from the same soil samples. Viable fungi, bacteria and actinomycete counts ranged from 7 to 300, from 300 to 1800, and from 0 to 5 cfu/gm, respectively. The highest counts were found in the O and E layers. Only the E layer contained the three types of siderophore-producing microorganisms investigated in this study. Siderophores were extracted from culture filtrates of the isolated microorganisms when grown under iron-limited conditions. These extracts varied considerably in siderophore composition. Fungal isolates produced up to 183 μM of hydroxamates, especially those isolated from the O layer, whereas bacteria and actinomycete isolated from the O and E layers of the soil produced high amounts of carboxylate, catecholate and hydroxamate siderophores. Actinomycete produced up to 93 μM of hydroxamates and 47 μM of catecholates, while bacteria produced up to 34 μM of carboxylates and up to 14 μM of catecholates.The depth variability in concentration and chemical composition and the good correlation between abundance of siderophore-producing microorganisms and siderophore soil concentrations strongly suggest that these siderophore-producing microorganisms play an important role in the mobilization of iron in the podzol soil that may be important in iron availability to plants in forest environment.[1] Clay et al. (1981) Biochemistry 20, 2432-2436. [2] Duckworth et al. (2009) ChemGeol 260, 149-158.
  •  
5.
  •  
6.
  • Bergkvist, Johanna, 1980, et al. (författare)
  • Turbulence simultaneously stimulates small- and large-scale CO2 sequestration by chain-forming diatoms in the sea
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Chain-forming diatoms are key CO2-fixing organisms in the ocean. Under turbulent conditions they form fast-sinking aggregates that are exported from the upper sunlit ocean to the ocean interior. A decade-old paradigm states that primary production in chain-forming diatoms is stimulated by turbulence. Yet, direct measurements of cell-specific primary production in individual field populations of chain-forming diatoms are poorly documented. Here we measured cell-specific carbon, nitrate and ammonium assimilation in two field populations of chain-forming diatoms (Skeletonema and Chaetoceros) at low-nutrient concentrations under still conditions and turbulent shear using secondary ion mass spectrometry combined with stable isotopic tracers and compared our data with those predicted by mass transfer theory. Turbulent shear significantly increases cell-specific C assimilation compared to still conditions in the cells/chains that also form fast-sinking, aggregates rich in carbon and ammonium. Thus, turbulence simultaneously stimulates small-scale biological CO2 assimilation and large-scale biogeochemical C and N cycles in the ocean.
  •  
7.
  • Bonaglia, Stefano, 1983- (författare)
  • Control factors of the marine nitrogen cycle : The role of meiofauna, macrofauna, oxygen and aggregates
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The ocean is the most extended biome present on our planet. Recent decades have seen a dramatic increase in the number and gravity of threats impacting the ocean, including discharge of pollutants, cultural eutrophication and spread of alien species. It is essential therefore to understand how different impacts may affect the marine realm, its life forms and biogeochemical cycles. The marine nitrogen cycle is of particular importance because nitrogen is the limiting factor in the ocean and a better understanding of its reaction mechanisms and regulation is indispensable. Furthermore, new nitrogen pathways have continuously been described. The scope of this project was to better constrain cause-effect mechanisms of microbially mediated nitrogen pathways, and how these can be affected by biotic and abiotic factors.This thesis demonstrates that meiofauna, the most abundant animal group inhabiting the world’s seafloors, considerably alters nitrogen cycling by enhancing nitrogen loss from the system. In contrast, larger fauna such as the polychaete Marenzelleria spp. enhance nitrogen retention, when they invade eutrophic Baltic Sea sediments. Sediment anoxia, caused by nutrient excess, has negative consequences for ecosystem processes such as nitrogen removal because it stops nitrification, which in turn limits both denitrification and anammox. This was the case of Himmerfjärden and Byfjord, two estuarine systems affected by anthropogenic activities, such as treated sewage discharges. When Byfjord was artificially oxygenated, nitrate reduction mechanisms started just one month after pumping. However, the balance between denitrification and nitrate ammonification did not favor either nitrogen removal or its retention.Anoxia is also present in aggregates of the filamentous cyanobacteria Nodularia spumigena. This thesis shows that even in fully oxic waters, millimetric aggregates can host anaerobic nitrogen processes, with clear implications for the pelagic compartment. While the thesis contributed to our knowledge on marine nitrogen cycling, more data need to be collected and experiments performed in order to understand key processes and regulation mechanisms of element cycles in the ocean. In this way, stakeholders may follow and take decisions in order to limit the continuous flow of human metabolites and impacts on the marine environment.
  •  
8.
  • Bonaglia, Stefano, et al. (författare)
  • Denitrification and DNRA at the Baltic Sea oxic-anoxic interface : Substrate spectrum and kinetics
  • 2016
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 61:5, s. 1900-1915
  • Tidskriftsartikel (refereegranskat)abstract
    • The dependence of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) on different electron donors was tested in the nitrate-containing layer immediately below the oxic-anoxic interface (OAI) at three stations in the central anoxic basins of the Baltic Sea. Additionally, pathways and rates of fixed nitrogen transformation were investigated with N-15 incubation techniques without addition of donors. Denitrification and anammox were always detected, but denitrification rates were higher than anammox rates. DNRA occurred at two sites and rates were two orders of magnitude lower than denitrification rates. Separate additions of dissolved organic carbon and sulfide stimulated rates without time lag indicating that both organotrophic and lithotrophic bacterial populations were simultaneously active and that they could carry out denitrification or DNRA. Manganese addition stimulated denitrification and DNRA at one station, but it is not clear whether this was due to a direct or indirect effect. Ammonium oxidation to nitrite was detected on one occasion. During denitrification, the production of nitrous oxide (N2O) was as important as dinitrogen (N-2) production. A high ratio of N2O to N-2 production at one site may be due to copper limitation, which inhibits the last denitrification step. These data demonstrate the coexistence of a range of oxidative and reductive nitrogen cycling processes at the Baltic OAI and suggest that the dominant electron donor supporting denitrification and DNRA is organic matter. Organotrophic denitrification is more important for nitrogen budgets than previously thought, but the large temporal variability in rates calls for long-term seasonal studies.
  •  
9.
  • Bonaglia, Stefano, et al. (författare)
  • EFFECT OF MEIOFAUNA ON BENTHIC ELEMENT CYCLING IN A BALTIC SEA COASTAL AREA
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • We have studied the role of meiofaunal communities for nutrient cycling and organic matter mineralization in coastal sediments of the Baltic Sea. Although meiofauna is orders of magnitude more abundant than macrofauna and has commonly a much more diverse community structure, its importance for sediment biogeochemical pathways is poorly understood because of objective experimental difficulties when manipulating meiofauna communities due to small body sizes (0.04 to 1 mm) and inherent fragility. We used a density extraction method to separate intact and living metazoans from sediment and tested the effect of low meiofauna and high meiofauna abundances in the presence and absence of macrofauna for exchange rates of nutrients, O2, DIC, N2, and CH4. High abundances of meiofauna stimulated O2 uptake and the net N2 efflux by 16% and 34%, respectively, but did not change oxygen penetration depths significantly. By contrast, macrofauna increased oxygen penetration depths by 21% and stimulated methane emissions by a factor of 8. These results demonstrate the importance of meiofauna in the regulation of aerobic and anaerobic microbial processes and benthic fluxes in marine sediments.
  •  
10.
  • Bonaglia, Stefano, et al. (författare)
  • Effect of reoxygenation and Marenzelleria spp. bioturbation on Baltic Sea sediment metabolism
  • 2013
  • Ingår i: Marine Ecology Progress Series. - : Inter Research. - 0171-8630 .- 1616-1599. ; 482, s. 43-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Nutrient reduction and the improvement of bottom water oxygen concentrations are thought to be key factors in the recovery of eutrophic aquatic ecosystems. The effects of reoxygenation and bioturbation of natural hypoxic sediments in the Baltic Sea were studied using a mesocosm experiment. Anoxic sediment box cores were collected from 100 m depth in Kanholmsfjärden (Stockholm Archipelago) and maintained in flow-through mesocosms with 3 treatments: (1) hypoxic: supplied with hypoxic water; (2) normoxic: supplied with oxic water; and (3) Marenzelleria: supplied with oxic water and the polychaete Marenzelleria spp. (2000 ind. m–2). After a 7 wk long conditioning period, net fluxes of dissolved O2, CH4, Fe2+, Mn2+, NH4+, NO2-, NO3-, PO43- and H4SiO4, and rates of nitrate ammonification (DNRA), denitrification and anammox were determined. Phosphate was taken up by the sediment in all treatments, and the uptake was highest in the normoxic treatment with Marenzelleria. Normoxic conditions stimulated the denitrification rate by a factor of 5. Denitrification efficiency was highest under normoxia (50%), intermediate in bioturbated sediments (16%), and very low in hypoxic sediments (4%). The shift from hypoxic to normoxic conditions resulted in a significantly higher retention of NH4+, H4SiO4 and Mn2+ in the sediment, but the bioturbation by Marenzelleria reversed this effect. Results from our study suggest that bioturbation by Marenzelleria stimulates the exchange of solutes between sediment and bottom water through irrigation and enhances bacterial sulfate reduction in the burrow walls. The latter may have a toxic effect on nitrifying bacteria, which, in turn, suppresses denitrification rates.
  •  
11.
  • Bonaglia, Stefano, et al. (författare)
  • Meiofauna increases bacterial denitrification in marine sediments
  • 2014
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5, s. 5133-
  • Tidskriftsartikel (refereegranskat)abstract
    • Denitrification is a critical process that can alleviate the effects of excessive nitrogen availability in aquatic ecosystems subject to eutrophication. An important part of denitrification occurs in benthic systems where bioturbation by meiofauna (invertebrates <1mm) and its effect on element cycling are still not well understood. Here we study the quantitative impact of meiofauna populations of different abundance and diversity, in the presence and absence of macrofauna, on nitrate reduction, carbon mineralization and methane fluxes. In sediments with abundant and diverse meiofauna, denitrification is double that in sediments with low meiofauna, suggesting that meiofauna bioturbation has a stimulating effect on nitrifying and denitrifying bacteria. However, high meiofauna densities in the presence of bivalves do not stimulate denitrification, while dissimilatory nitrate reduction to ammonium rate and methane efflux are significantly enhanced. We demonstrate that the ecological interactions between meio-, macrofauna and bacteria are important in regulating nitrogen cycling in soft-sediment ecosystems.
  •  
12.
  • Bonaglia, Stefano, et al. (författare)
  • Methane fluxes from coastal sediments are enhanced by macrofauna
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane and nitrous oxide are potent greenhouse gases (GHGs) that contribute to climate change. Coastal sediments are important GHG producers, but the contribution of macrofauna (benthic invertebrates larger than 1 mm) inhabiting them is currently unknown. Through a combination of trace gas, isotope, and molecular analyses, we studied the direct and indirect contribution of two macrofaunal groups, polychaetes and bivalves, to methane and nitrous oxide fluxes from coastal sediments. Our results indicate that macrofauna increases benthic methane efflux by a factor of up to eight, potentially accounting for an estimated 9.5% of total emissions from the Baltic Sea. Polychaetes indirectly enhance methane efflux through bioturbation, while bivalves have a direct effect on methane release. Bivalves host archaeal methanogenic symbionts carrying out preferentially hydrogenotrophic methanogenesis, as suggested by analysis of methane isotopes. Low temperatures (8 °C) also stimulate production of nitrous oxide, which is consumed by benthic denitrifying bacteria before it reaches the water column. We show that macrofauna contributes to GHG production and that the extent is dependent on lineage. Thus, macrofauna may play an important, but overlooked role in regulating GHG production and exchange in coastal sediment ecosystems.
  •  
13.
  • Bonaglia, Stefano, et al. (författare)
  • Seasonal benthic nutrient cycling in a Baltic sea estuary
  • 2012
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Decades of urban, industrial, and agricultural discharge of nitrogen and phosphorus to the Baltic Sea have contributed to the spreading of water column hypoxia and annual widespread cyanobacteria blooms. Central to mitigating Baltic Sea eutrophication is to resolve how much reduction strategies of external N and P loading are offset by internal loading of the Baltic through nutrient recycling from the sediment. We investigated the seasonal variation of benthic nitrogen and phosphorus cycling in an estuary of the Baltic impacted by decades of sewage discharge. Sediment nutrient fluxes, denitrification, Anammox, DNRA, potential nitrification, and total and diffusive oxygen uptake (TOU/DOU) were quantified with 15N-tracer methods and microsensor profiling. Data indicate benthic net efflux of ammonium and phosphorus during the summer months, decreasing N2 loss with increasing organic matter content, and benthic N/P regeneration with a ratio of 3 to 7 compared to the sewage discharge N/P of ≈ 25, and a significant contribution (6 to 25%) of Anammox to N2 loss. On average benthic denitrification and Anammox may reduce the N load to the estuary by up to 54%.
  •  
14.
  • Bonaglia, Stefano, 1983-, et al. (författare)
  • Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns
  • 2014
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 119:1-3, s. 139-160
  • Tidskriftsartikel (refereegranskat)abstract
    • The regulatory roles of temperature, eutrophication and oxygen availability on benthic nitrogen (N) cycling and the stoichiometry of regenerated nitrogen and phosphorus (P) were explored along a Baltic Sea estuary affected by treated sewage discharge. Rates of sediment denitrification, anammox, dissimilatory nitrate reduction to ammonium (DNRA), nutrient exchange, oxygen (O2) uptake and penetration were measured seasonally. Sediments not affected by the nutrient plume released by the sewage treatment plant (STP) showed a strong seasonality in rates of O2 uptake and coupled nitrification-denitrification, with anammox never accounting for more than 20% of the total dinitrogen (N2) production. N cycling in sediments close to the STP was highly dependent on oxygen availability, which masked temperature-related effects. These sediments switched from low N loss and high ammonium (NH4+) efflux under hypoxic conditions in the fall, to a major N loss system in the winter when the sediment surface was oxidized. In the fall DNRA outcompeted denitrification as the main nitrate (NO3-) reduction pathway, resulting in N recycling and potential spreading of eutrophication. A comparison with historical records of nutrient discharge and denitrification indicated that the total N loss in the estuary has been tightly coupled to the total amount of nutrient discharge from the STP. Changes in dissolved inorganic nitrogen (DIN) released from the STP agreed well with variations in sedimentary N2 removal. This indicates that denitrification and anammox efficiently counterbalance N loading in the estuary across the range of historical and present-day anthropogenic nutrient discharge. Overall low N/P ratios of the regenerated nutrient fluxes impose strong N limitation for the pelagic system and generate a high potential for nuisance cyanobacterial blooms.
  •  
15.
  • Bonaglia, Stefano, et al. (författare)
  • Sulfide oxidation in deep Baltic Sea sediments upon oxygenation and colonization by macrofauna
  • 2019
  • Ingår i: Marine Biology. - : Springer Science and Business Media LLC. - 0025-3162 .- 1432-1793. ; 166
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal and shelf sediments affected by transient or long-term bottom water anoxia and sulfidic conditions undergo drastic changes in macrofauna communities and abundances. This study investigates how early colonization by two macrofaunal functional traits (epifauna vs. infauna) affects oxygen, sulfide, and pH dynamics in anoxic sediment upon recent bottom water oxygenation. Large mesocosms (area 900 cm(2)) with 150-m-deep Baltic Sea soft sediments were exposed to three treatments: (1) no animals; (2) addition of 170 polychaetes (Marenzelleria arctia); (3) addition of 181 amphipods (Monoporeia affinis). Porewater chemistry was investigated repeatedly by microsensor profiling over a period of 65 days. Colonization by macrofauna did not significantly deepen penetration of oxygen compared to the animal-free sediment. Bioturbation by M. affinis increased the volume of the oxidized, sulfide-free sediment by 66% compared to the animal-free control already after 13 days of incubation. By the end of the experiment M. affinis and M. arctia increased the oxidized sediment volume by 87 and 35%, respectively. Higher efficiency of epifaunal amphipods in removing hydrogen sulfide than deep-burrowing polychaetes is likely due to more substantial re-oxidation of manganese and/or nitrogen compounds associated with amphipod mixing activity. Our results thus indicate that early colonization of different functional groups might have important implications for the later colonization by benthic macrofauna, meiofauna and microbial communities that benefit from oxidized and sulfide-free sediments.
  •  
16.
  • Bonaglia, Stefano, et al. (författare)
  • The fate of fixed nitrogen in marine sediments with low organic loading : an in situ study
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:2, s. 285-300
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the last decades, the impact of human activities on the global nitrogen (N) cycle has drastically increased. Consequently, benthic N cycling has mainly been studied in anthropogenically impacted estuaries and coasts, while in oligotrophic systems its understanding is still scarce. Here we report on benthic solute fluxes and on rates of denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) studied by in situ incubations with benthic chamber landers during two cruises to the Gulf of Bothnia (GOB), a cold, oligotrophic basin located in the northern part of the Baltic Sea. Rates of N burial were also inferred to investigate the fate of fixed N in these sediments. Most of the total dissolved fixed nitrogen (TDN) diffusing to the water column was composed of organic N. Average rates of dinitrogen (N-2) production by denitrification and anammox (range: 53-360 mu mol Nm(-2) day(-1)) were comparable to those from Arctic and subarctic sediments worldwide (range: 34-344 mu mol Nm(-2) day(-1)). Anammox accounted for 18-26% of the total N2 production. Absence of free hydrogen sulfide and low concentrations of dissolved iron in sediment pore water suggested that denitrification and DNRA were driven by organic matter oxidation rather than chemolithotrophy. DNRA was as important as denitrification at a shallow, coastal station situated in the northern Bothnian Bay. At this pristine and fully oxygenated site, ammonium regeneration through DNRA contributed more than one-third to the TDN efflux and accounted, on average, for 45% of total nitrate reduction. At the offshore stations, the proportion of DNRA in relation to denitrification was lower (0-16% of total nitrate reduction). Median value and range of benthic DNRA rates from the GOB were comparable to those from the southern and central eutrophic Baltic Sea and other temperate estuaries and coasts in Europe. Therefore, our results contrast with the view that DNRA is negligible in cold and well-oxygenated sediments with low organic carbon loading. However, the mechanisms behind the variability in DNRA rates between our sites were not resolved. The GOB sediments were a major source (237 kt yr(-1), which corresponds to 184% of the external N load) of fixed N to the water column through recycling mechanisms. To our knowledge, our study is the first to document the simultaneous contribution of denitrification, DNRA, anammox, and TDN recycling combined with in situ measurements.
  •  
17.
  • Bradshaw, Clare, et al. (författare)
  • Physical Disturbance by Bottom Trawling Suspends Particulate Matter and Alters Biogeochemical Processes on and Near the Seafloor
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Bottom trawling is known to affect benthic faunal communities but its effects on sediment suspension and seabed biogeochemistry are less well described. In addition, few studies have been carried out in the Baltic Sea, despite decades of trawling in this unique brackish environment and the frequent occurrence of trawling in areas where hypoxia and low and variable salinity already act as ecosystem stressors. We measured the physical and biogeochemical impacts of an otter trawl on a muddy Baltic seabed. Multibeam bathymetry revealed a 36 m-wide trawl track, comprising parallel furrows and sediment piles caused by the trawl doors and shallower grooves from the groundgear, that displaced 1,000 m3 (500 t) sediment and suspended 9.5 t sediment per km of track. The trawl doors had less effect than the rest of the gear in terms of total sediment mass but per m2 the doors had 5× the displacement and 2× the suspension effect, due to their greater penetration and hydrodynamic drag. The suspended sediment spread >1 km away over the following 3–4 days, creating a 5–10 m thick layer of turbid bottom water. Turbidity reached 4.3 NTU (7 mgDW L–1), 550 m from the track, 20 h post-trawling. Particulate Al, Ti, Fe, P, and Mn were correlated with the spatio-temporal pattern of suspension. There was a pulse of dissolved N, P, and Mn to a height of 10 m above the seabed within a few hundred meters of the track, 2 h post-trawling. Dissolved methane concentrations were elevated in the water for at least 20 h. Sediment biogeochemistry in the door track was still perturbed after 48 h, with a decreased oxygen penetration depth and nutrient and oxygen fluxes across the sediment-water interface. These results clearly show the physical effects of bottom trawling, both on seabed topography (on the scale of km and years) and on sediment and particle suspension (on the scale of km and days-weeks). Alterations to biogeochemical processes suggest that, where bottom trawling is frequent, sediment biogeochemistry may not have time to recover between disturbance events and elevated turbidity may persist, even outside the trawled area.
  •  
18.
  •  
19.
  • Brüchert, Volker, 1965-, et al. (författare)
  • BENTHIC BOUNDARY LAYER NUTRIENT AND OXYGEN BIOGEOCHEMISTRY IN A EUTROPHIED BALTIC SEA ESTUARY
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • We present dissolved nutrient and oxygen concentrations determined with a benthic boundary layer profiling system for a set of stations along a eutrophication gradient in a Baltic Sea estuary. The sampling system yields vertically highly resolved CTD, oxygen, and nutrient profiles of the lowermost 80 cm of water overlying the sediment. Continuous oxygen and CTD measurements over 8 – 24 hours at fixed depths above the sediment surface provided information on the temporal variability of nutrients and the physical structure within the benthic boundary layer. These data indicate multiple short-term episodes of vertical mixing and stable stratification within the boundary layer that can lead to short-term fluctuations in bottom water oxygen of more than 100 µM. This high degree of temporal variability needs to be taken into account for benthic flux calculations that assume vertically mixed benthic boundary layers. 
  •  
20.
  • Brüchert, Volker, et al. (författare)
  • Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment
  • 2018
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 15:2, s. 471-490
  • Tidskriftsartikel (refereegranskat)abstract
    • The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling, intact sediment core incubations, 35 S-sulfate tracer experiments, porewater dissolved inorganic carbon (DIC), δ13 CDIC, and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope, and allowed us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 20 to 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 82% of the depthintegrated carbon mineralization. Oxygen uptake rates and 35 S-sulfate reduction rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC/NH4 + ratios in porewaters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end member calculations, the terrestrial organic carbon contribution varied between 32% and 36%, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using  isotope end member apportionment over the outer shelf of the Laptev and East Siberian Sea suggests that about 16 Tg C per year are respired in the outer shelf sea floor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3 Tg C per year are degraded by anaerobic processes, with a terrestrial organic carbon contribution ranging between 0.3 and 0.5 Tg per year.
  •  
21.
  • Brüchert, Volker, et al. (författare)
  • Hydrogen sulphide and methane emissions on the central Namibian shelf
  • 2009
  • Ingår i: Progress in Oceanography. - : Elsevier. - 0079-6611 .- 1873-4472. ; 83:1-4, s. 169-179
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogen sulphide occurs frequently in the waters of the inner shelf coastal upwelling area off central Namibia. The area affected coincides with hatching grounds of commercially important pelagic fish, whose recruitment may be severely affected by recurring toxic sulphidic episodes. Both episodic biogenic methane gas-driven advective and molecular diffusive flux of hydrogen sulphide have been implicated as transport mechanisms from the underlying organic-matter-rich diatomaceous mud. To test hypotheses on the controls of hydrogen sulphide transport from the sediments on the inner Namibian shelf, water column and sediment data were acquired from four stations between 27 and 72 m water depth over a 3 year long period. On 14 cruises, temperature, salinity, dissolved oxygen, nitrate, methane, and total dissolved sulphide were determined from water column samples, and pore water dissolved methane, total dissolved sulphide, biomass of benthic sulphide-oxidising bacteria Beggiatoa and Thiomargarita, and bacterial sulphate reduction rates were determined from sediment cores. Superimposed on a trend of synchronous changes in water column oxygen and nutrient concentrations controlled by regional hydrographic conditions were asynchronous small-scale variations at the in-shore stations that attest to localized controls on water column chemistry. Small temporal variations in sulphate reduction rates determined with 35S-labeled sulphate do not support the interpretation that variable emissions of sulphide and methane from sediments are driven by temporal changes in the degradation rates of freshly deposited organic matter. The large temporal changes in the concentrations of hydrogen sulphide and the co-occurrence of pore water sulphate and methane support an interpretation of episodic advection of methane and hydrogen sulphide from deeper sediment depths – possibly due to gas bubble transport. Effective fluxes of hydrogen sulphide and methane to the water column, and methane and sulphide concentrations in the bottom waters were decoupled, likely due to the activity of sulphide-oxidising bacteria. While the causal mechanism for the episodic fluctuations in methane and dissolved sulphide concentrations remains unclear, this data set points to the importance of alternating advective and diffusive transport of methane and hydrogen sulphide to the water column.
  •  
22.
  •  
23.
  • Brüchert, Volker, et al. (författare)
  • Sediment med nyckelroll i näringsväven
  • 2014
  • Ingår i: Havsutsikt. - 1104-0513. ; 2014:1, s. 20-21
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • I sedimenten sker processer som kan vara helt avgörande för näringsbalansen i havsvattnet. Omvandlingen av fosfor till olika former är relativt väl känd, medan detaljerna i kvävets kretslopp är betydligt mindre kända. Mer än hälften av den årliga tillförseln av kväve till Östersjön beräknas omsättas till kvävgas i sedimentet, vilket sedan går förlorat för de flesta marina organismer.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 96
Typ av publikation
tidskriftsartikel (65)
konferensbidrag (19)
licentiatavhandling (4)
annan publikation (2)
doktorsavhandling (2)
forskningsöversikt (2)
visa fler...
rapport (1)
recension (1)
visa färre...
Typ av innehåll
refereegranskat (76)
övrigt vetenskapligt/konstnärligt (13)
populärvet., debatt m.m. (7)
Författare/redaktör
Brüchert, Volker (77)
Bonaglia, Stefano (17)
Klawonn, Isabell (6)
Arnosti, Carol (6)
Jakobsson, Martin (5)
Bartoli, Marco (5)
visa fler...
Ploug, Helle (4)
O'Regan, Matt (4)
Bonaglia, Stefano, 1 ... (4)
Mörth, Carl-Magnus (4)
Humborg, Christoph (4)
Skelton, Alasdair (4)
Balic-Zunic, Tonci (4)
Jørgensen, Bo Barker (4)
Stranne, Christian (4)
Lavik, Gaute (4)
Deutsch, Barbara (4)
Jorgensen, Bo Barker (4)
Ulfsbo, Adam, 1985 (3)
Nascimento, Francisc ... (3)
Gustafsson, Örjan (3)
Hall, Per, 1954 (3)
Norkko, Alf (3)
Vandieken, Verona (3)
Muchowski, Julia (3)
Sun, Xiaole (3)
Raymond, Caroline (2)
Thornton, Brett F. (2)
Nilsson, Johan (2)
Winder, Monika (2)
Holmstrand, Henry (2)
Ahmed, Engy (2)
Holmström, Sara (2)
Thamdrup, Bo (2)
Svensson, Ola (2)
O'Regan, Matthew (2)
Skogby, Henrik (2)
Bradshaw, Clare (2)
Semiletov, Igor (2)
Rahm, Lars (2)
Roth, Florian (2)
Gunnarsson, Jonas S. (2)
Stockmann, Gabrielle (2)
Bartoli, M (2)
Grossart, Hans-Peter (2)
Shakeri Yekta, Sepeh ... (2)
Fuchs, Bernhard M. (2)
Prytherch, John (2)
Ekeroth, Nils (2)
Ketzer, João Marcelo (2)
visa färre...
Lärosäte
Stockholms universitet (93)
Göteborgs universitet (12)
Lunds universitet (5)
Naturhistoriska riksmuseet (4)
Sveriges Lantbruksuniversitet (3)
Uppsala universitet (2)
visa fler...
Linköpings universitet (2)
Linnéuniversitetet (2)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (95)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (75)
Lantbruksvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy