SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brenning Nils) "

Sökning: WFRF:(Brenning Nils)

  • Resultat 1-25 av 140
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aijaz, Asim, et al. (författare)
  • A strategy for increased carbon ionization in magnetron sputtering discharges
  • 2012
  • Ingår i: Diamond and related materials. - : Elsevier BV. - 0925-9635 .- 1879-0062. ; 23, s. 1-4
  • Tidskriftsartikel (refereegranskat)abstract
    • A strategy that facilitates a substantial increase of carbon ionization in magnetron sputtering discharges is presented in this work. The strategy is based on increasing the electron temperature in a high power impulse magnetron sputtering discharge by using Ne as the sputtering gas. This allows for the generation of an energetic C+ ion population and a substantial increase in the C+ ion flux as compared to a conventional Ar-HiPIMS process. A direct consequence of the ionization enhancement is demonstrated by an increase in the mass density of the grown films up to 2.8 g/cm(3); the density values achieved are substantially higher than those obtained from conventional magnetron sputtering methods.
  •  
2.
  •  
3.
  •  
4.
  • Alfvén, Hannes, et al. (författare)
  • Voyager saturnian ring measurements and the early history of the solar-system
  • 1986
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 34:2, s. 145-154
  • Tidskriftsartikel (refereegranskat)abstract
    • The mass distribution in the Saturnian ring system is investigated and compared with predictions from the plasma cosmogony. According to this theory, the matter in the rings has once been in the form of a magnetized plasma, in which the gravitation is balanced partly by the centrifugal force and partly by the electromagnetic forces. As the plasma is neutralized, the electromagnetic forces disappear and the matter can be shown to fall in to of the original saturnocentric distance. This causes the so called “cosmogonic shadow effect”, which has been demonstrated earlier for the asteroidal belt and in the large scale structure of the Saturnian ring system.The relevance of the cosmogonic shadow effect is investigated for parts of the fine structures of the Saturnian ring system. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly less than) closer to Saturn than the causing feature. Voyager data agree with an accuracy better than 1%.
  •  
5.
  • Antunes, V. G., et al. (författare)
  • Influence of the magnetic field on the extension of the ionization region in high power impulse magnetron sputtering discharges
  • 2023
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 32:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The high power impulse magnetron sputtering (HiPIMS) discharge brings about increased ionization of the sputtered atoms due to an increased electron density and efficient electron energization during the active period of the pulse. The ionization is effective mainly within the electron trapping zone, an ionization region (IR), defined by the magnet configuration. Here, the average extension and the volume of the IR are determined based on measuring the optical emission from an excited level of the argon working gas atoms. For particular HiPIMS conditions, argon species ionization and excitation processes are assumed to be proportional. Hence, the light emission from certain excited atoms is assumed to reflect the IR extension. The light emission was recorded above a 100 mm diameter titanium target through a 763 nm bandpass filter using a gated camera. The recorded images directly indicate the effect of the magnet configuration on the average IR size. It is observed that the shape of the IR matches the shape of the magnetic field lines rather well. The IR is found to expand from 10 and 17 mm from the target surface when the parallel magnetic field strength 11 mm above the racetrack is lowered from 24 to 12 mT at a constant peak discharge current.
  •  
6.
  • Appelgren, Patrik (författare)
  • Experiments with and modelling of explosively driven mangetic flux compression generators
  • 2008
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents work performed on explosively driven magnetic flux compression generators. This kind of devices converts the chemically stored energy in a high explosive into electromagnetic energy in the form of a powerful current pulse. The high energy density of the high explosives makes flux compression generators attractive as compact power sources. In order to study these devices a generator was designed at FOI in the mid-90ies. Two generators remained unused and became available for this licentiate work. The thesis reports experiments with, and simulations of, the operation of the two remaining generators. The aim was to fully understand the performance of the generator design and be able to accurately simulate its behaviour. The generators were improved and fitted with various types of diagnostics to monitor the generator operation. Two experiments were performed of which the first generator was operated well below its current capability limits while the second was stressed far above its limits. Since the generator generates a rapidly increasing current, a current measurement is the most important diagnostic revealing the current amplification of the generator and its overall performance. Further it is important to measure the timing of various events in the generator. With a common time reference it is possible to combine data from different probes and extract interesting information which cannot be directly obtained with a single measurement. Two types of numerical simulations have been performed: Hydrodynamic simulations of the high explosive interaction with the armature were used to verify the measured armature dynamics. A zero-dimensional code was used to perform circuit simulations of the generator. The model takes into account the inductance reduction due to the compression of the generator as well as the change in conductivity due to heating of the conductors in the generators.
  •  
7.
  •  
8.
  • Appelgren, Patrik, et al. (författare)
  • Modeling of a small helical magnetic flux compression generator
  • 2008
  • Ingår i: IEEE Transactions on Plasma Science. - 0093-3813 .- 1939-9375. ; 36:5, s. 2662-2672
  • Tidskriftsartikel (refereegranskat)abstract
    •  In order to gain experience in explosive pulsed power and to provide experimental data as the basis for computer modeling, a small high-explosive-driven helical magnetic flux-compression generator (FCG) was designed at the Swedish Defence Research Agency. The generator, of which three have been built, has an overall length of 300 mm and a diameter of 70 mm. It could serve as the energy source in a pulse-forming network to generate high-power pulses for various loads. This paper presents a simulation model of this helical FCG. The model, which was implemented in Matlab-Simulink, uses analytical expressions for the generator inductance. The model of resistive losses takes into account the heating of the conductors and the diffusion of the magnetic field into the conductors. The simulation results are compared with experimental data from two experiments with identical generators but with different seed currents, influencing the resistive losses. The model is used to analyze the performance of the generator.
  •  
9.
  • Appelgren, Patrik, et al. (författare)
  • Small Helical Magnetic Flux-Compression Generators : Experiments and Analysis
  • 2008
  • Ingår i: IEEE Transactions on Plasma Science. - 0093-3813 .- 1939-9375. ; 36:5, s. 2673-2683
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to gain experience in explosive pulsed power and to provide experimental data for modeling, a small high-explosive-driven helical magnetic flux-compression generator (FCG) was designed at the Swedish Defence Research Agency (FOI). The generator, of which three have been built, has an overall length of 300 mm and a diameter of 70 mm. It could serve as the energy source in a pulse-forming network to generate high power pulses for various loads. This paper presents the design of, and tests with, this helical FCG. The generator had an initial inductance of 23 mu H and was operated into a load of 0.2 mu H. The generator is charged with 0.27 kg of high explosives (PBXN-5). Various types of diagnostics were used to monitor the operation of the generator, including current probes, optical fibers, and piezo gauges. With seed currents of 5.7 and 11.2 kA, final currents of 269 and 436 kA were obtained, corresponding to current amplification factors of 47 and 39. The peak of the current was reached about 30 mu s after the time of crowbar. The two generators showed only small losses in terms of 2 pi-clocking. Using signals from optical fibers, the deflection angle of the armature could be determined to be 10 degrees in good agreement with hydrodynamic simulations of the detonation process and the detonation velocity to be 8.7 km/s in agreement with tabulated value.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Babu, Swetha Suresh, et al. (författare)
  • Modeling of high power impulse magnetron sputtering discharges with tungsten target
  • 2022
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 31:6, s. 065009-
  • Tidskriftsartikel (refereegranskat)abstract
    • The ionization region model (IRM) is applied to model a high power impulse magnetron sputtering discharge with a tungsten target. The IRM gives the temporal variation of the various species and the average electron energy, as well as internal discharge parameters such as the ionization probability and the back-attraction probability of the sputtered species. It is shown that an initial peak in the discharge current is due to argon ions bombarding the cathode target. After the initial peak, the W+ ions become the dominating ions and remain as such to the end of the pulse. We demonstrate how the contribution of the W+ ions to the total discharge current at the target surface increases with increased discharge voltage for peak discharge current densities J (D,peak) in the range 0.33-0.73 A cm(-2). For the sputtered tungsten the ionization probability increases, while the back-attraction probability decreases with increasing discharge voltage. Furthermore, we discuss the findings in terms of the generalized recycling model and compare to experimentally determined deposition rates and find good agreement.
  •  
14.
  • Barynova, Kateryna, et al. (författare)
  • On working gas rarefaction in high power impulse magnetron sputtering
  • 2024
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 33:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The ionization region model (IRM) is applied to explore working gas rarefaction in high power impulse magnetron sputtering discharges operated with graphite, aluminum, copper, titanium, zirconium, and tungsten targets. For all cases the working gas rarefaction is found to be significant, the degree of working gas rarefaction reaches values of up to 83%. The various contributions to working gas rarefaction, including electron impact ionization, kick-out by the sputtered species or hot argon atoms, and diffusion, are evaluated and compared for the different target materials, and over a range of discharge current densities. The relative importance of the various processes varies between different target materials. In the case of a graphite target with argon as the working gas at 1 Pa, electron impact ionization (by both primary and secondary electrons) is the dominating contributor to working gas rarefaction, with over 90% contribution, while the contribution of sputter wind kick-out is small < 10 %. In the case of copper and tungsten targets, the kick-out dominates, with up to ∼60% contribution at 1 Pa. For metallic targets the kick-out is mainly due to metal atoms sputtered from the target, while for the graphite target the small kick-out contribution is mainly due to kick-out by hot argon atoms and to a smaller extent by carbon atoms. The main factors determining the relative contribution of the kick-out by the sputtered species to working gas rarefaction appear to be the sputter yield and the working gas pressure.
  •  
15.
  • Bohm, Martin, et al. (författare)
  • Dynamic trapping : Neutralization of positive space charge in a collisionless magnetized plasma
  • 1990
  • Ingår i: Physical Review Letters. - 0031-9007. ; 65, s. 859-866
  • Tidskriftsartikel (refereegranskat)abstract
    • It is shown by numerical simulations that in a collisionless plasma electron inertia leads to inefficient neutralization of positive space charge and allows large positive potentials (φ ≫ kTe/e) to be established and maintained on the time scale of ion motion. This is true even if the buildup of positive space charge is so slow that it corresponds to a small fraction of the random electron current of the surrounding plasma. A simple physical model clarifies the physics of the process and provides an analytical expression for the potential.
  •  
16.
  •  
17.
  • Bohm, Martin, et al. (författare)
  • Dynamic trapping of electrons in the porcupine ionospheric ion beam experiment
  • 1992
  • Ingår i: Advances in Space Research. - 0273-1177. ; 12, s. 9-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrons are needed to maintain quasineutrality in a case where positive ions are injected across the magnetic field into a limited volume in a magnetized plasma. In the absence of collisions, a positive potential builds up and traps the electrons which enter the region along the magnetic field. If the added density of ions exceeds the ambient density, large potential differences along the magnetic field can be maintained this way. The process explains several features of the Porcupine xenon ion beam injection experiment, where strong magnetic-field-aligned electric fields were measured in the vicinity of a xenon ion beam which was injected into the ambient ionosphere from a spinning subpayload. © 1992.
  •  
18.
  •  
19.
  •  
20.
  • Brenning, Nils, et al. (författare)
  • A bulk plasma model for dc and HiPIMS magnetrons
  • 2008
  • Ingår i: PLASMA SOURCES SCIENCE and TECHNOLOGY. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 17:4, s. 045009-
  • Tidskriftsartikel (refereegranskat)abstract
    • A plasma discharge model has been developed for the bulk plasma (also called the extended presheath) in sputtering magnetrons. It can be used both for high power impulse magnetron sputtering (HiPIMS) and conventional dc sputtering magnetrons. Demonstration calculations are made for the parameters of the HiPIMS sputtering magnetron at Link "oping University, and also benchmarked against results in the literature on dc magnetrons. New insight is obtained regarding the structure and time development of the currents, the electric fields and the potential profiles. The transverse resistivity eta(perpendicular to) has been identified as having fundamental importance both for the potential profiles and for the motion of ionized target material through the bulk plasma. New findings are that in the HiPIMS mode, as a consequence of a high value of eta(perpendicular to), (1) there can be an electric field reversal that in our case extends 0.01-0.04m from the target, (2) the electric field in the bulk plasma is typically an order of magnitude weaker than in dc magnetrons, (3) in the region of electric field reversal the azimuthal current is diamagnetic in nature, i.e. mainly driven by the electron pressure gradient, and actually somewhat reduced by the electron Hall current which here has a reversed direction and (4) the azimuthal current above the racetrack can, through resistive friction, significantly influence the motion of the ionized fraction of the sputtered material and deflect it sideways, away from the target and towards the walls of the magnetron.
  •  
21.
  •  
22.
  • Brenning, Nils, et al. (författare)
  • A unified treatment of self-sputtering, process gas recycling, and runaway for high power impulse sputtering magnetrons
  • 2017
  • Ingår i: Plasma sources science & technology. - : Institute of Physics (IOP). - 0963-0252 .- 1361-6595. ; 26:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The combined processes of self-sputter (SS)-recycling and process gas recycling in high power impulse magnetron sputtering (HiPIMS) discharges are analyzed using the generalized recycling model (GRM). The study uses experimental data from discharges with current densities from the direct current magnetron sputtering range to the HiPIMS range, and using targets with self-sputter yields Y-SS from approximate to 0.1 to 2.6. The GRM analysis reveals that, above a critical current density of the order of J(crit) approximate to 0.2 A cm(-2), a combination of self-sputter recycling and gas-recycling is generally the case. The relative contributions of these recycling mechanisms, in turn, influence both the electron energy distribution and the stability of the discharges. For high self-sputter yields, above Y-SS approximate to 1, the discharges become dominated by SS-recycling, contain few hot secondary electrons from sheath energization, and have a relatively low electron temperature T-e. Here, stable plateau values of the discharge current develop during long pulses, and these values increase monotonically with the applied voltage. For low self-sputter yields, below Y-SS approximate to 0.2, the discharges above J(crit) are dominated by process gas recycling, have a significant sheath energization of secondary electrons and a higher T-e, and the current evolution is generally less stable. For intermediate values of YSS the discharge character gradually shifts between these two types. All of these discharges can, at sufficiently high discharge voltage, give currents that increase rapidly in time. For such cases we propose that a distinction should be made between 'unlimited' runaway and 'limited' runaway: in unlimited runaway the current can, in principle, increase without a limit for a fixed discharge voltage, while in limited runaway it can only grow towards finite, albeit very high, levels. For unlimited runway Y-SS > 1 is found to be a necessary criterion, independent of the amount of gas-recycling in the discharge.
  •  
23.
  • Brenning, Nils, et al. (författare)
  • Alfven's critical ionization velocity observed in high power impulse magnetron sputtering discharges
  • 2012
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 19:9, s. 093505-
  • Tidskriftsartikel (refereegranskat)abstract
    • Azimuthally rotating dense plasma structures, spokes, have recently been detected in several high power impulse magnetron sputtering (HiPIMS) devices used for thin film deposition and surface treatment, and are thought to be important for plasma buildup, energizing of electrons, as well as cross-B transport of charged particles. In this work, the drift velocities of these spokes are shown to be strongly correlated with the critical ionization velocity, CIV, proposed by Alfven. It is proposed as the most promising approach in combining the CIV and HiPIMS research fields is to focus on the role of spokes in the process of electron energization.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 140
Typ av publikation
tidskriftsartikel (89)
rapport (29)
konferensbidrag (8)
doktorsavhandling (6)
licentiatavhandling (3)
bokkapitel (2)
visa fler...
annan publikation (1)
forskningsöversikt (1)
patent (1)
visa färre...
Typ av innehåll
refereegranskat (96)
övrigt vetenskapligt/konstnärligt (43)
populärvet., debatt m.m. (1)
Författare/redaktör
Brenning, Nils (131)
Lundin, Daniel (42)
Raadu, Michael A. (38)
Helmersson, Ulf (30)
Gudmundsson, Jon Tom ... (23)
Axnäs, Ingvar (12)
visa fler...
Huo, Chunqing (12)
Fälthammar, Carl-Gun ... (10)
Minea, T. (9)
Pilch, Iris (8)
Gudmundsson, Jon Tom ... (7)
Lundin, D (7)
Rudolph, M. (7)
Brenning, Nils, Prof ... (7)
Rudolph, Martin (7)
Hajihoseini, Hamidre ... (7)
Anders, Andre (6)
Hajihoseini, H. (6)
Hurtig, T. (6)
Söderström, Daniel (6)
Minea, Tiberiu (6)
Gunell, H. (6)
Nilsson, H (5)
Fischer, Joel (5)
Bohm, Martin (5)
Karlsson, Tomas (4)
Marklund, Göran (4)
Appelgren, Patrik (4)
Haerendel, G. (4)
Boyd, Robert (4)
Gunnarsson, Rickard (4)
Kelley, M.C. (4)
Providakes, J. (4)
Swenson, C. (4)
Zanaska, Michal (4)
Lundin, Daniel, 1980 ... (3)
Helmersson, Ulf, 195 ... (3)
Lattemann, Martina (3)
Alfvén, Hannes (3)
Anders, A. (3)
Hurtig, Tomas (3)
Olson, Jonas (3)
Kirkpatrick, Scott (3)
Gunell, Herbert (3)
Pfaff, R. (3)
Stenbaek-Nielsen, H. ... (3)
Wescott, E.M. (3)
Minea, Tiberiu M. (3)
Vitelaru, C. (3)
Vitelaru, Catalin (3)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (133)
Linköpings universitet (57)
Umeå universitet (6)
Uppsala universitet (6)
Luleå tekniska universitet (1)
Språk
Engelska (140)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (111)
Teknik (13)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy