SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brodin Gert Prof.) "

Sökning: WFRF:(Brodin Gert Prof.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergman, Sofia, 1991- (författare)
  • Low-energy ions around comet 67P/Churyumov-Gerasimenko
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Low-energy ions play important roles in the formation of the plasma environment around a comet. Reliable ways of measuring these ions are therefore of high importance to fully understand the processes and dynamics of this environment. Unfortunately, low-energy ions are infamously difficult to detect. A spacecraft interacts with the surrounding environment, which leads to an accumulation of charge on the spacecraft surface. As a result, the surface acquires an electrostatic potential with respect to the surrounding plasma, which can be either positive or negative. Low-energy ions are then attracted to or repelled from the charged surface before being detected by the instrument on board, resulting in an energy shift and change of travel direction of the ions. The Rosetta mission studied comet 67P/Churyumov-Gerasimenko during the years 2014-2016, and provided the most detailed observations of a comet and its environment to date. The Ion Composition Analyzer of the Rosetta Plasma Consortium (RPC-ICA) measured positive ions in the cometary environment with energies down to just a few eV. The low-energy part of the data is, however, difficult to interpret due to the distortions caused by the spacecraft potential. In this thesis, the Spacecraft Plasma Interaction Software (SPIS) is used to correct the low-energy ion measurements made by RPC-ICA for the effects introduced by the spacecraft potential. The distortion of the effective field of view is modelled for different ion energies and plasma environments, and the results are used to correct the flow direction of low-energy ions around the comet. The FOV distortion can be considered insignificant when the energy of the ions (in eV) is twice the value of the spacecraft potential (in volts). The FOV distortion at lower energies is geometry dependent, and varies substantially between different pixels of the instrument. The FOV distortion is furthermore dependent on the Debye length of the surrounding plasma. The knowledge obtained from the simulations is subsequently used to study the flow direction of low-energy ions in and around the diamagnetic cavity, a region where the magnetic field is essentially zero and low-energy ions are important for the dynamics. Evidence of counter-streaming ions are found, with ions flowing both radially away from and back towards the nucleus. SPIS is also used to model the influence of the spacecraft potential on the energy spectrum of the ions, and from this the bulk speed and temperature of the low-energy ions in the diamagnetic cavity were determined to 5-10 km/s and 0.7-1.6 eV, respectively. The bulk speed is significantly above the speed of the neutral particles, indicating a weak coupling between ions and neutrals in the diamagnetic cavity.
  •  
2.
  • Forsberg, Mats, 1978- (författare)
  • Gravitational perturbations in plasmas and cosmology
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gravitational perturbations can be in the form of scalars, vectors or tensors. This thesis focuses on the evolution of scalar perturbations in cosmology, and interactions between tensor perturbations, in the form of gravitational waves, and plasma waves. The gravitational waves studied in this thesis are assumed to have small amplitudes and wavelengths much shorter than the background length scale, allowing for the assumption of a flat background metric. Interactions between gravitational waves and plasmas are described by the Einstein-Maxwell-Vlasov, or the Einstein-Maxwell-fluid equations, depending on the level of detail required. Using such models, linear wave excitation of various waves by gravitational waves in astrophysical plasmas are studied, with a focus on resonance effects. Furthermore, the influence of strong magnetic field quantum electrodynamics, leading to detuning of the gravitational wave-electromagnetic wave resonances, is considered. Various nonlinear phenomena, including parametric excitation and wave steepening are also studied in different astrophysical settings. In cosmology the evolution of gravitational perturbations are of interest in processes such as structure formation and generation of large scale magnetic fields. Here, the growth of density perturbations in Kantowski-Sachs cosmologies with positive cosmological constant is studied.
  •  
3.
  • Eriksson, Daniel, 1977- (författare)
  • Perturbative Methods in General Relativity
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Einstein's theory of general relativity is a cornerstone in the process of gaining increased understanding about problems of gravitational nature. It can be applied to problems on the huge length scales of cosmology and as far as we know it does not break down before the Planck scale is approached. Irrespective of scale, a perturbative approach is often a very useful way to reduce the Einstein system to manageable complexity and size.The projects included in this thesis can be divided into three subcategories. In the first category the keyword is photon-photon scattering. General relativity predicts that scattering can take place on a flat background due to the curvature of space-time caused by the photons themselves. The coupling equations and cross-section are found and a comparison with the corresponding quantum field theoretical results is done to leading order. Moreover, photon-photon scattering due to exchange of virtual electron-positron pairs is considered as an effective field theory in terms of the Heisenberg-Euler Lagrangian resulting in a possible setup for experimental detection of this phenomenon using microwave cavities. The second category of projects is related to cosmology. Here linear perturbations around a flat FRW universe with a cosmological constant are considered and the corresponding temperature variations of the cosmic microwave background radiation are found. Furthermore, cosmological models of Bianchi type V are investigated using a method based on the invariant scheme for classification of metrics by Karlhede. The final category is slowly rotating stars. Here the problem of matching a perfect fluid interior of Petrov type D to an exterior axisymmetric vacuum solution is treated perturbatively up to second order in the rotational parameter.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy