SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buffam Ishi) "

Sökning: WFRF:(Buffam Ishi)

  • Resultat 1-25 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  • Audet, Joachim, et al. (författare)
  • Forest streams are important sources for nitrous oxide emissions - Nitrous oxide emissions from Swedish streams
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26, s. 629-641
  • Tidskriftsartikel (refereegranskat)abstract
    • Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2O). N2O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2O concentration data from low-order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2O concentrations of 1.6 +/- 2.1 and 1.3 +/- 1.8 mu g N/L, respectively (mean +/- SD) despite higher total N (TN) concentrations in agricultural streams (1,520 +/- 1,640 vs. 780 +/- 600 mu g N/L). Although clear patterns linking N2O concentrations and environmental variables were difficult to discern, the percent saturation of N2O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2O emissions. An estimate of the N2O emission from low-order streams at the national scale revealed that ~1.8 x 10(9) g N2O-N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2O sources in the landscape with 800 x 10(9) g CO2-eq emitted annually in Sweden, equivalent to 25% of the total N2O emissions from the Swedish agricultural sector.
  •  
3.
  • Berggren, Martin, et al. (författare)
  • Unified understanding of intrinsic and extrinsic controls of dissolved organic carbon reactivity in aquatic ecosystems
  • 2022
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 103:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite our growing understanding of the global carbon cycle, scientific consensus on the drivers and mechanisms that control dissolved organic carbon (DOC) turnover in aquatic systems is lacking, hampered by the mismatch between research that approaches DOC reactivity from either intrinsic (inherent chemical properties) or extrinsic (environmental context) perspectives. Here we propose a conceptual view of DOC reactivity in which the combination of intrinsic and extrinsic factors controls turnover rates and determines which reactions will occur. We review three major types of reactions (biological, photochemical, and flocculation) from an intrinsic chemical perspective and further define the environmental features that modulate the expression of chemically inherent reactivity potential. Finally, we propose hypotheses of how extrinsic and intrinsic factors together shape patterns in DOC turnover across the land-to-ocean continuum, underscoring that there is no intrinsic DOC reactivity without environmental context. By acknowledging the intrinsic–extrinsic control duality, our framework intends to foster improved modeling of DOC reactivity and its impact on ecosystem services.
  •  
4.
  • Björkvald, Louise, et al. (författare)
  • Hydrogeochemistry of Fe and Mn in small boreal streams : The role of seasonality, landscape type and scale
  • 2008
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 72:12, s. 2789-2804
  • Tidskriftsartikel (refereegranskat)abstract
    • Stream water from a stream network of 15 small boreal catchments (0.03–67 km2) in northern Sweden was analyzed for unfiltered (total) and filtered (<0.4 μm) concentrations of iron (Fetot and Fe<0.4) and manganese (Mntot and Mn<0.4). The purpose was to investigate the temporal and spatial dynamics of Fe, Mn and dissolved organic carbon (DOC) as influenced by snow melt driven spring floods and landscape properties, in particular the proportion of wetland area. During spring flood, concentrations of Fetot, Fe<0.4, Mntot, Mn<0.4 and DOC increased in streams with forested catchments (<2% wetland area). In catchments with high coverage of wetlands (>30% wetland area) the opposite behavior was observed. The hydrogeochemistry of Fe was highly dependent on wetlands as shown by the strong positive correlation of the Fetot/Altot ratio with wetland coverage (r2 = 0.89, p < 0.001). Furthermore, PCA analysis showed that at base flow Fetot and Fe<0.4 were positively associated with wetlands and DOC, whereas they were not associated during peak flow at spring flood. The temporal variation of Fe was likely related to varying hydrological pathways. At peak discharge Fetot was associated with variables like silt coverage, which highlights the importance of particulates during high discharge events. For Mn there was no significant correlation with wetlands, instead, PCA analysis showed that during spring flood Mn was apparently more dependent on the supply of minerogenic particulates from silt deposits on the stream banks of some of the streams. The influence of minerogenic particulates on the concentration of, in particular, Mn was greatest in the larger, lower gradient streams, characterized by silt deposits in the near-stream zone. In the small forested streams underlain by till, DOC was of greater importance for the observed concentrations, as indicated by the positive correlation of both Fetot and Fe<0.4 with DOC (r2 = 0.77 and r2 = 0.76, p < 0.001) at the smallest headwater forest site. In conclusion, wetland area and DOC were important for Fe concentrations in this boreal stream network, whereas silt deposits strongly influenced Mn concentrations. This study highlights the importance of studying stream water chemistry from a landscape perspective in order to address future environmental issues concerning mobility of Fe, Mn and associated trace metals.
  •  
5.
  • Buffam, Ishi, et al. (författare)
  • Environmental drivers of seasonal variation in green roof runoff water quality
  • 2016
  • Ingår i: Ecological Engineering. - : Elsevier. - 0925-8574 .- 1872-6992. ; 91, s. 506-514
  • Tidskriftsartikel (refereegranskat)abstract
    • Green (vegetated) roofs provide many beneficial environmental services but can also pose a disservice by leaching nutrients and metals, via storm water runoff, to downstream aquatic ecosystems. Current estimates of water quality impacts rely on limited samples (snapshots in time) and may not accurately reflect the true influence of green roof ecosystems, which likely vary temporally as do natural ecosystems. Using a 46 m(2) green roof in Cincinnati, OH, we analyzed runoff from >80 events over two years for pH, conductivity, and concentrations of dissolved nutrients, base cations, and metals. We related the variation in water chemistry to environmental variables including air temperature, storm event magnitude, and estimated antecedent moisture. We observed strong seasonal patterns in bioactive elements, with carbon, nitrogen, phosphorus, and base cation concentrations highest in the summer, and positively correlated with temperature. This suggests temperature-mediated processes such as microbial mineralization of organic matter, desorption or weathering, rather than plant uptake or hydrologic variation among storms, are the major controlling mechanisms for runoff water quality in this newly constructed green roof. The large temporal variation in green roof effluent water quality supports the need for long-term studies to characterize the complexity of these engineered ecosystems and their responsiveness to environmental variation. (C) 2016 Elsevier B.V. All rights reserved.
  •  
6.
  • Buffam, Ishi (författare)
  • Green roof research in North America: a recent history and future strategies
  • 2020
  • Ingår i: Journal of living architecture. - : Green Roofs for Healthy Cities. ; 7, s. 27-64
  • Forskningsöversikt (refereegranskat)abstract
    • Since the year 2000, green roof and living architecture research has progressed significantly in North America. For future growth in the implementation of living architecture, there is still a great need for additional and expanded research on green roofs and as yet undefined innovative J. of Living Arch 7(1) Feature 28 green infrastructure. This paper provides an overview of priority topics that have been critical to past success in green roofs, and those that are promising but need future investment, including urban heat island (UHI), energy savings, stormwater (quantity and quality), substrates, carbon budgets, plants, biodiversity, ecomimicry, biodispersal, long-term dynamics, urban food production, synergy with solar panels and financing green solutions.
  •  
7.
  • Buffam, Ishi, et al. (författare)
  • Influence of the Landscape Template on Chemical and Physical Habitat for Brown Trout Within a Boreal Stream Network
  • 2021
  • Ingår i: Frontiers in Water. - : Frontiers Media SA. - 2624-9375. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • We used the distribution of stream-dwelling brown trout (Salmo trutta) in a 67 km(2) boreal catchment to explore the importance of environmental organizing factors at a range of spatial scales, including whole-catchment characteristics derived from map data, and stream reach chemical and physical characteristics. Brown trout were not observed at any sites characterized by pH < 5.0 during the spring snowmelt episode, matching published toxicity thresholds. Brown trout distributions were patchy even in less acidic regions of the stream network, positively associated with glaciofluvial substrate and negatively associated with fine sand/silty sediments. A multivariate model including only whole-catchment characteristics explained 43% of the variation in brown trout densities, while models with local site physical habitat characteristics or local stream chemistry explained 33 and 25%, respectively. At the stream reach scale, physical habitat apparently played a primary role in organizing brown trout distributions in this stream network, with acidity placing an additional restriction by excluding brown trout from acidic headwater streams. Much of the strength of the catchment characteristics-fish association could be explained by the correlation of catchment-scale landscape characteristics with local stream chemistry and site physical characteristics. These results, consistent with the concept of multiple hierarchical environmental filters regulating the distribution of this fish species, underline the importance of considering a range of spatial scales and both physical and chemical environments when attempting to manage or restore streams for brown trout.
  •  
8.
  • Buffam, Ishi, et al. (författare)
  • Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112
  • Tidskriftsartikel (refereegranskat)abstract
    • Acidity is well known to influence stream biota, but the less well-studied spatial and temporal distributions of acidity are likely to play a larger ecological role than average values. We present data on spatial variability of chemical parameters contributing to acidity during winter baseflow and spring flood periods in Krycklan, a fourth-order boreal stream network in northern Sweden. Fifteen stream sites were monitored in subcatchments spanning 3 orders of magnitude in size and representing a wide range of percent wetland. At baseflow, pH ranged from 3.9 to 6.5 at the different sites. Baseflow dissolved organic carbon (DOC) concentration varied by an order of magnitude and was positively correlated with subcatchment percent wetland, resulting in high spatial variability in dissociated organic acids (OA(-)). During spring flood, DOC and OA(-) increased in forested sites and decreased in wetland sites, resulting in reduced spatial variability in their concentrations. In contrast, base cations and strong acid anions diluted throughout the stream network, resulting in decreased acid neutralizing capacity (ANC) at all sites. The spatial variability of base cations increased slightly with high flow. As a result of the changes in OA(-) and ANC, pH dropped at all but the most acidic site, giving a slightly narrowed pH range during spring flood (4.2-6.1). The transition from winter to spring flood stream chemistry could largely be explained by: (1) a shift from mineral to upper riparian organic soil flow paths in forested catchments and (2) dilution of peat water with snowmelt in wetland catchments.
  •  
9.
  •  
10.
  • Buffam, Ishi, et al. (författare)
  • Priorities and barriers for urban ecosystem service provision: A comparison of stakeholder perspectives from three cities
  • 2022
  • Ingår i: Frontiers in Sustainable Cities. - : Frontiers Media SA. - 2624-9634. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Urban Green Infrastructure (UGI) can provide many needed ecosystem services (ES) to help address challenges like biodiversity loss and climate change while contributing to the health and wellbeing of urban inhabitants. In order to optimize UGI for a given city, a first step is to assess the local ES needs and the potential barriers to ES provision. However, it is not known how consistent these needs and barriers are among cities in different settings. To help address this knowledge gap, the aim of this study was to assess ES priorities and existing barriers to ES provision for three cities varying in socioeconomic, cultural and climatic setting: Addis Ababa (Ethiopia), Cincinnati (USA) and Malmö (Sweden). In case studies of each of the three cities, we carried out workshops with key stakeholders and collected their assessments of both current provision of ES from UGI and future priorities. The workshops were followed by expert stakeholder interviews aimed at highlighting existing barriers to ES provision. In spite of the different urban contexts, expressed ES priorities were similar among the cities, with the highest cross-cutting priorities being climate change adaptation, stormwater runoff management and water quality, mental and physical health, biodiversity, and provision of local food. Stakeholder-expressed barriers to ES provision were also broadly similar among cities, falling into three main categories: structural pressures, gaps in governance, and lack of ecological awareness and vision. Our results suggest that certain key ES priorities and barriers may apply broadly to cities regardless of climatic or socio-cultural context. These generic needs can help direct the focus of future studies, and imply a clear benefit to international, even cross-continental study and knowledge-exchange among practitioners and researchers working with UGI.
  •  
11.
  • Buffam, Ishi, et al. (författare)
  • Spatial heterogeneity of the spring flood acid pulse in a boreal stream network.
  • 2008
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 407:1, s. 708-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatial and temporal patterns in streamwater acidity are ecologically important, but difficult to measure in parallel. Here we present the spatial distribution of streamwater chemistry relevant to acidity from 60 stream sites distributed throughout a 67 km(2) boreal catchment, sampled during a period of winter baseflow (high pH) and during a spring flood episode (low pH). Sites were grouped based on pH level and pH change from winter baseflow to spring flood. The site attributes of each pH group were then assessed in terms of both stream chemistry and subcatchment landscape characteristics. Winter baseflow pH was high throughout most of the stream network (median pH 6.4), but during the spring flood episode stream sites experienced declines in pH ranging from 0-1.6 pH units, resulting in pH ranging from 4.3-6.3. Spring flood pH was highest in larger, lower altitude catchments underlain by fine sorted sediments, and lowest in small, higher altitude catchments with a mixture of peat wetlands and forested till. Wetland-dominated headwater catchments had low but stable pH, while the spring flood pH drop was largest in a group of catchments of intermediate size which contained well-developed coniferous forest and a moderate proportion of peat wetlands. There was a trend with distance downstream of higher pH, acid neutralizing capacity (ANC) and base cation concentrations together with lower dissolved organic carbon (DOC, strongly negatively correlated with pH). This apparent scale-dependence of stream chemistry could be explained by a number of environmental factors which vary predictably with altitude, catchment area and distance downstream-most notably, a shift in surficial sediment type from unsorted till and peat wetlands to fine sorted sediments at lower altitudes in this catchment. As a result of the combination of spatial heterogeneity in landscape characteristics and scale-related processes, boreal catchments like this one can be expected to experience high spatial variability both in terms of chemistry at any given point in time, and in the change experienced during high discharge episodes. Although chemistry patterns showed associations with landscape characteristics, considerable additional variability remained, suggesting that the modeling of dynamic stream chemistry from map parameters will continue to present a challenge. (C) 2008 Elsevier B.V. All rights reserved.
  •  
12.
  • Buffam, Ishi (författare)
  • Urban buried streams: Abrupt transitions in habitat and biodiversity
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 819
  • Tidskriftsartikel (refereegranskat)abstract
    • Stream burial, the rerouting of streams into underground culverts, is common in industrialized and densely populated urban areas. While stream burial is common in urban environments, direct characterization of the within-culvert environment is rare and it is unclear if buried reaches reflect neighboring open reaches regarding habitat, biota, and water chemistry. Additionally, for a buried stream, the entrance and exit of the culvert are abrupt habitat transitions within the stream channel, and it is unknown if these transitions lead to similarly abrupt responses in biotic and abiotic characteristics or if responses are gradual. Quantifying the within-culvert environment and transitions upon entering/ exiting the culvert has rarely been done but can help inform management practices regarding how these systems are impacted and establish a baseline for evaluating daylighting or stream restoration projects. To understand how culverts affect longitudinal biotic and abiotic characteristics of urban streams, we evaluated longitudinal patterns of physical habitat characteristics, stream water physiochemistry, periphyton biomass, and macroinvertebrate density and diversity in two urban streams that included long (>100 m) culvert reaches. Abrupt transitions in a suite of abiotic and biotic variables were observed at the entrances and exits of the culverts whereas some variables showed no response to the culvert presence. Periphyton biomass and macroinvertebrate density were reduced by 98% and 92%, respectively, by culverts in the two streams. Within the culverts, we observed greater water depths (average of 10 cm outside vs 26 cm within the culvert), finer benthic substrate, and diversity of macroinvertebrates was reduced by 50%. Nutrient concentrations, in contrast, showed no response to the presence of a culvert. Within 60-90 m downstream of the culvert exits, most of the measured parameters returned to levels similar to those observed upstream of the culvert, suggesting that the ecosystem impacts of urban culverts, though dramatic, may be spatially constrained. Published by Elsevier B.V.
  •  
13.
  •  
14.
  • Cory, Neil, et al. (författare)
  • Particulate aluminium in boreal streams : Towards a better understanding of its sources and influence on dissolved aluminium speciation
  • 2009
  • Ingår i: Applied Geochemistry. - : Elsevier BV. - 0883-2927 .- 1872-9134. ; 24:9, s. 1677-1685
  • Tidskriftsartikel (refereegranskat)abstract
    • The adverse impacts of the inorganic labile monomeric Al (Al-i) fraction on aquatic organisms have meant that Al (Al-tot) determination and even speciation has become a routine part of environmental monitoring and assessment. However, if samples are not filtered prior to analysis then particulate Al (Al-tot(p)) could influence the determination of Al-tot, and therefore the determination of the more toxicologically important (Al-i), both when it is measured analytically or modelled from Al-tot. This paper shows that the Al/DOC ratio in unfiltered samples can identify the Al-tot(p) fraction, and thus improve the speciation of Al-i. These findings are based on data from a study in a 67 km(2) catchment in northern Sweden during the snowmelt-driven spring flood of two consecutive years. Filtered and unfiltered samples were studied to determine the spatial and temporal patterns in Al-tot(p). The concentrations of Al-tot(p) were greatest in larger downstream sites where significant silt deposits are located. The sites with no silt in their drainage area showed a mean difference between filtered (Al-tot(f)) and unfiltered (Al-tot(uf)) samples of 6%, while sites with silt deposits had a mean difference of 65%. The difference between filtered and unfiltered samples was greatest at peak flow. Spikes in Al-tot(p) did not behave consistently during fractionation with a cation exchange column, resulting in increases in either measured Al-i(f) or non-labile monomeric Al (Al-o(f)). Al-tot(p) spikes were associated with sharp increases in the Al:DOC ratio. The baseflow Al:DOC ratio could be used to model filtered Al-tot from DOC with a Spearman rho of 0.75. 
  •  
15.
  • Erlandsson, Martin, et al. (författare)
  • Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate
  • 2008
  • Ingår i: Global Change Biology. - : Blackwell Publishing. - 1354-1013 .- 1365-2486. ; 14:5, s. 1191-1198
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing concentrations of organic matter ( OM) in surface waters have been noted over large parts of the boreal/nemoral zone in Europe and North America. This has raised questions about the causes and the likelihood of further increases. A number of drivers have been proposed, including temperature, hydrology, as well as SO42 - and Cl (-) deposition. The data reported so far, however, have been insufficient to define the relative importance of different drivers in landscapes where they interact. Thirty-five years of monthly measurements of absorbance and chemical oxygen demand ( COD), two common proxies for OM, from 28 large Scandinavian catchments provide an unprecedented opportunity to resolve the importance of hypothesized drivers. For 21 of the catchments, there are 18 years of total organic carbon (TOC) measurements as well. Despite the heterogeneity of the catchments with regards to climate, size and land use, there is a high degree of synchronicity in OM across the entire region. Rivers go from widespread trends of decreasing OM to increasing trends and back again three times in the 35-year record. This synchronicity in decadal scale oscillations and long-term trends suggest a common set of dominant OM drivers in these landscapes. Here, we use regression models to test the importance of different potential drivers. We show that flow and SO42 - together can predict most of the interannual variability in OM proxies, up to 88% for absorbance, up to 78% for COD. Two other candidate drivers, air temperature and Cl (-) , add little explanatory value. Declines in anthropogenic SO42 - since the mid-1970s are thus related to the observed OM increases in Scandinavia, but, in contrast to many recent studies, flow emerges as an even more important driver of OM variability. Stabilizing SO42 - levels also mean that hydrology is likely to be the major driver of future variability and trends in OM.
  •  
16.
  • Fölster, Jens, et al. (författare)
  • A Novel Environmental Quality Criterion for Acidification in Swedish Lakes - An Application of Studies on the Relationship Between Biota and Water Chemistry
  • 2007
  • Ingår i: Acid Rain - Deposition to Recovery. - Netherlands : Springer. - 9781402058844 ; , s. 331-338
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The recovery from acidification has led to the demand for more precise criteria for classification of acidification. The Swedish Environmental Protection Agency has revised Sweden's Ecological Quality Criteria for acidification to improve the correlation between the chemical acidification criteria and biological effects. This paper summarises the most relevant findings from several of the studies commissioned for this revision. The studies included data on water chemistry in 74 reference lakes in southern Sweden with data on fish in 61 of the lakes, as well as data on littoral fauna in 48 lakes. We found that the acidity variable most strongly correlated to the biota was the median pH from the current year. Our results probably do not reflect the mechanisms behind the negative effects of acidity on the biota, but are fully relevant for evaluation of monitoring data. The biogeochemical models used for predicting acidification reference conditions generate a pre-industrial buffering capacity. In order to get an ecologically more relevant criteria for acidification based on pH, we transferred the estimated change in buffering capacity into a corresponding change in pH. A change of 0.4 units was defined as the threshold for acidification. With this criterion a considerably lower number of Swedish lakes were classified as acidified when compared with the present Ecological Quality Criteria.
  •  
17.
  • Fölster, Jens, et al. (författare)
  • A Novel Environmental Quality Criterion for Acidification in Swedish Lakes – An Application of Studies on the Relationship Between Biota and Water Chemistry
  • 2007
  • Ingår i: Water, Air, & Soil Pollution: Focus. - : Springer Science and Business Media LLC. - 1567-7230 .- 1573-2940. ; 7:1-3, s. 331-338
  • Tidskriftsartikel (refereegranskat)abstract
    • The recovery from acidification has led to the demand for more precise criteria for classification of acidification. The Swedish Environmental Protection Agency has revised Sweden’s Ecological Quality Criteria for acidification to improve the correlation between the chemical acidification criteria and biological effects. This paper summarises the most relevant findings from several of the studies commissioned for this revision. The studies included data on water chemistry in 74 reference lakes in southern Sweden with data on fish in 61 of the lakes, as well as data on littoral fauna in 48 lakes. We found that the acidity variable most strongly correlated to the biota was the median pH from the current year. Our results probably do not reflect the mechanisms behind the negative effects of acidity on the biota, but are fully relevant for evaluation of monitoring data. The biogeochemical models used for predicting acidification reference conditions generate a pre-industrial buffering capacity. In order to get an ecologically more relevant criteria for acidification based on pH, we transferred the estimated change in buffering capacity into a corresponding change in pH. A change of 0.4 units was defined as the threshold for acidification. With this criterion a considerably lower number of Swedish lakes were classified as acidified when compared with the present Ecological Quality Criteria.
  •  
18.
  • Haei, Mahsa, 1981-, et al. (författare)
  • Cold winter soils enhance dissolved organic carbon concentrations in soil and stream water
  • 2010
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union. - 0094-8276 .- 1944-8007. ; 37, s. L08501-
  • Tidskriftsartikel (refereegranskat)abstract
    • Concentrations of dissolved organic carbon ([DOC]) have increased in lakes, streams and rivers across a large part of the northern hemisphere and raised an animated scientific debate about the underlying mechanisms. The lack of consensus about the role of climate in controlling the DOC trends highlights the need for understanding the regulation of surface water DOC. We found that longer and colder winters result in higher [DOC] in a boreal headwater stream during the subsequent snowmelt. In addition, prolonged soil frost increases the spring and summer [DOC] in the riparian soil water, which is a major contributor of stream water DOC in the studied area. We conclude that winter climatic conditions can play a substantial role in controlling stream [DOC] in ways not previously understood. These findings are especially important for northern latitude regions expected to be most affected by climate change. Citation: Haei, M., M. G. Oquist, I. Buffam, A. angstrom gren, P. Blomkvist, K. Bishop, M. Ottosson Lofvenius, and H. Laudon (2010), Cold winter soils enhance dissolved organic carbon concentrations in soil and st ream water, Geophys. Res. Lett., 37, L08501, doi: 10.1029/2010GL042821.
  •  
19.
  • Karlsen, Reinert Huseby, et al. (författare)
  • Landscape controls on spatiotemporal discharge variability in a boreal catchment
  • 2016
  • Ingår i: Water resources research. - 0043-1397 .- 1944-7973. ; 52:8, s. 6541-6556
  • Tidskriftsartikel (refereegranskat)abstract
    • Improving the understanding of how stream flow dynamics are influenced by landscape characteristics, such as soils, vegetation and terrain, is a central endeavor of catchment hydrology. Here we investigate how spatial variability in stream flow is related to landscape characteristics using specific discharge time series from 14 partly nested subcatchments in the Krycklan basin (0.12 - 68 km(2)). Multivariate principal component analyses combined with univariate analyses showed that while variability in landscape characteristics and specific discharge were strongly related, the spatial patterns varied with season and wetness conditions. During spring snowmelt and at the annual scale, specific discharge was positively related to the sum of wetland and lake area. During summer, when flows are lowest, specific discharge was negatively related to catchment tree volume, but positively related to deeper sediment deposits and catchment area. The results indicate how more densely forested areas on till soils become relatively drier during summer months, while wet areas and deeper sediment soils maintain a higher summer base flow. Annual and seasonal differences in specific discharge can therefore be explained to a large extent by expected variability in evapotranspiration fluxes and snow accumulation. These analyses provide an organizing principle for how specific discharge varies spatially across the boreal landscape, and how this variation is manifested for different wetness conditions, seasons and time scales.
  •  
20.
  • Köhler, S. J., et al. (författare)
  • Dynamics of stream water TOC concentrations in a boreal headwater catchment : Controlling factors and implications for climate scenarios
  • 2009
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 373:1-2, s. 44-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Two different but complementary modelling approaches for reproducing the observed dynamics of total organic carbon (TOC) in a boreal stream are presented. One is based on a regression analysis, while the other is based on riparian soil conditions using a convolution of flow and concentration. Both approaches are relatively simple to establish and help to identify gaps in the process understanding of the TOC transport from soils to catchments runoff. The largest part of the temporal variation of stream TOC concentrations (4-46 mg L-1) in a forested headwater stream in the boreal zone in northern Sweden may be described using a four-parameter regression equation that has runoff and transformed air temperature as sole input variables. Runoff is assumed to be a proxy for soil wetness conditions and changing flow pathways which in turn caused most of the stream TOC variation. Temperature explained a significant part of the observed inter-annual variability. Long-term riparian hydrochemistry in soil solutions within 4 m of the stream also captures a surprisingly large part of the observed variation of stream TOC and highlights the importance of riparian soils. The riparian zone was used to reproduce stream TOC with the help of a convolution model based on flow and average riparian chemistry as input variables. There is a significant effect of wetting of the riparian soil that translates into a memory effect for subsequent episodes and thus contributes to controlling stream TOC concentrations. Situations with high flow introduce a large amount of variability into stream water TOC that may be related to memory effects, rapid groundwater fluctuations and other processes not identified so far. Two different climate scenarios for the region based on the IPCC scenarios were applied to the regression equation to test what effect the expected increase in precipitation and temperature and resulting changes in runoff would have on stream TOC concentrations assuming that the soil conditions remain unchanged. Both scenarios resulted in a mean increase of stream TOC concentrations of between 1.5 and 2.5 mg L-1 during the snow free season, which amounts to approximately 15% more TOC export compared to present conditions. Wetter and warmer conditions in the late autumn led to a difference of monthly average TOC of up to 5 mg L-1, suggesting that stream TOC may be particularly susceptible to climate variability during this season.
  •  
21.
  • Laudon, Hjalmar, et al. (författare)
  • Impact of changing DOC concentrations on the potential distribution of acid sensitive biota in a boreal stream network
  • 2007
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 4, s. 3145-3173
  • Tidskriftsartikel (refereegranskat)abstract
    • DOC concentrations have increased in many surface waters in Europe and North America over the past few decades. As DOC exerts a strong influence on pH this DOC increase could have detrimental effects on acid sensitive biota in many streams and lakes. To investigate the potential implications of changes in the DOC concentration on stream water biota, we have used a mesoscale boreal stream network in northern Sweden as a case study. The network was sampled for stream water chemistry at 60 locations during both winter base flow and spring flood periods, representing the extremes experienced annually in these streams both in terms of discharge and acidity. The effect of changing DOC on pH was modeled for all sampling locations using an organic acid model, with input DOC concentrations for different scenarios adjusted by between –30% and +50% from measured present concentrations. The resulting effect on pH was then used to quantify the proportion of stream length in the catchment with pH below the acid thresholds of pH 5.5 and pH 5.0. The results suggest that a change in stream water DOC during base flow would have only a limited effect on pH and hence on the stream length with pH below the acid thresholds. During the spring flood on the other hand a change in DOC would strongly influence pH and the stream length with pH below the acid thresholds. For example an increase in DOC concentration of 30% at all sites would increase the proportion of stream length with pH below 5.5 from 37% to 65%, and the proportion of stream length with pH below 5.0 would increase from 18% to 27%. The results suggest that in poorly-buffered high DOC waters, even a marginal change in the DOC concentration could impact acid sensitive biota in a large portion of the aquatic landscape.
  •  
22.
  • Laudon, Hjalmar, et al. (författare)
  • Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams : The Role of Processes, Connectivity, and Scaling
  • 2011
  • Ingår i: Ecosystems (New York. Print). - New York, NY : Springer. - 1432-9840 .- 1435-0629. ; 14:6, s. 880-893
  • Tidskriftsartikel (refereegranskat)abstract
    • We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3 to 6900 ha in size, as well as a set of monitored transects of forested and wetland soils. We show that in small homogenous catchments, hydrological functioning provides a first order control on the temporal variability of stream water DOC. In larger, more heterogeneous catchments, stream water DOC dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment covered by 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions. During high flow, the major source of DOC is from forested areas of the catchment. We demonstrate that by connecting knowledge about DOC sources in the landscape with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. The purpose of this study is to serve as a framework for appreciating the role of regulating mechanisms, connectivity and scaling for understanding the pattern and dynamics of surface water DOC across complex landscapes. The results from this study suggest that the sensitivity of stream water DOC in the boreal landscape ultimately depends on changes within individual landscape elements, the proportion and connectivity of these affected landscape elements, and how these changes are propagated downstream.
  •  
23.
  • Laudon, Hjalmar, et al. (författare)
  • The Krycklan Catchment Study, Sweden: A field based experimental platform for linking small-scale process understanding to landscape patterns
  • 2007
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The Krycklan Catchment Study (KCS) (http://ccrew.sek.slu.se/krycklan), is a multiscale experimental catchment located in the boreal region of northern Sweden. The catchment is extensively instrumented for hydrological and biogeochemical research, including 15 permanent gauging stations, ranging from 3 ha to 6700 ha in size, intensively sampled and continuously monitored to quantify temporal and spatial variations in water chemistry and discharge. An additional 90 locations are sampled occasionally for water chemistry at different runoff stages. The multi-investigator KCS has been developed to provide a direct insight into the governing hydrological and biogeochemical processes at a range of catchment scales and consists at present of over 30 separate projects. Its location within an established Experimental Forest provides a comprehensive instrumental infrastructure, long-term climate monitoring facilities and a small research catchment where process-based hillslope, hydrological and biogeochemical research has been conducted for three decades. Recently two new major investments are being implemented. The first includes a Riparian Observatory with over 200 soil lysimeters in the riparian zone. The second investment is the use of laserscanning (LIDAR) which makes KCS one of the first large-scale research catchments where high-resolution elevation and ground cover data are available for hydrological and water quality modeling.
  •  
24.
  • Lönnqvist, Joel (författare)
  • Green roof vegetation and storm water runoff quantity - Effects of plant traits, diversity and life strategies
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Green roofs have gained recognition and popularity globally for their potential to help mitigate the negative impacts of urbanization such as habitat loss and disruption of the water cycle caused by increased impervious surfaces. However, there is still a need to enhance our understanding of green roof vegetation dynamics and how they affect plant water use and hydrological function under varying environmental conditions. This doctoral thesis aims to address this knowledge gap by applying a wide range methods, including field surveys on full scale gren roofs, a laboratory scale water use experiment, and rainfall runoff monitoring from pilot scale green roofs.Vegetation surveys on 41 green roofs of varying ages and designs in northern Sweden's cold climate revealed that substrate depth plays a crucial role in supporting greater plant abundance and more species-rich plant assemblages on these roofs. Of the originally intended speceis, 24% were found at the time of surveys whereas spontaneous unintended plant species frequently comprised a substantial proportion (69%) of the species richness on these roofs. No relationship was found between speceis richness and plant cover on the surveyed roofs.Analysis of Scandinavian green roof vegetation in nine different locations with varying climates revealed that survival rates and covers of the intended vegetation were negatively influenced by low annual temperature. Contrary to the initial hypothesis, high annual precipitation was also negatively related to the survival and cover of intended vegetation. Conversely, spontaneous plants were favored by high mean annual precipitation, compensating for the loss of intended vegetation. Freeze-thaw cycles and longest dry period did not have any detectable effect on vegetation during the two year time period.Additionally, the thesis explored the potential of spontaneous vegetation as a functional alternative to purposefully planted roofs. While unpredictable, spontaneous vegetation could significantly contribute to the overall ecological function of green roofs, as the spontaneous species found in a speceis survey had complementary life strategies and traits compared to the intended vegetation. The low abundance of most spontaneous species in plant surveys in northern Sweden however, questions their contribution to the hydrological function in that climate.Growth, leaf traits, and life strategies related to species-specific water use of 10 green roof species was investigated under well-watered and water-deficit conditions in a controlled laboratory setting. Species classified with more competitive or ruderal life strategies were found to display higher water use as compared to stress-tolerant succulent species, and leaf dry matter content (LDMC) was a good indicator of water use for these species. The water use of typical succulent green roof plants (mostly classified as stress tolerators) was the same or lower than the evaporation from the bare substrate and the findings highlighted the potential of considering how species specific traits, life strategies affect plant water use to better understand plants contribution to green roof hydrological function.Runoff from 34 pilot roof modules (size 2 m²) was measured from rains under natural weather conditions. The impact of four life strategy-based vegetation mixes on green roof hydrological function was assessed and compared to a standard succulent monoculture, non-vegetated bare substrate green roofs, and conventional roofs. All green roof modules, including bare substrates, showed significantly higher stormwater retention compared to conventional roofs. The effect of vegetation type increased with increasing rain volume, and the stress-tolerant strategy based vegetation generally outperformed bare substrates and succulent monocultures, having higher retention and peak flow attenuation.
  •  
25.
  • Mitchell, Mark, et al. (författare)
  • Carbon, nitrogen, and phosphorus variation along a green roof chronosequence: Implications for green roof ecosystem development
  • 2021
  • Ingår i: Ecological Engineering. - : Elsevier BV. - 0925-8574 .- 1872-6992. ; 164
  • Tidskriftsartikel (refereegranskat)abstract
    • While the developmental dynamics of ecosystems have been studied in many natural systems, it is unclear if these patterns are to be expected in engineered ecosystems where components have not co-developed over time. Green roofs often begin with a nutrient rich substrate that is paired with slow-growing plants adapted to nutrient poor conditions - perhaps resulting in different developmental dynamics than natural ecosystems. We evaluated changes over time in green roof nutrient content and vegetation communities using a chronosequence in southern Sweden of similarly designed but different aged green roofs spanning between 2 and 22 years. Substrate depth, substrate nitrogen (N), and total N pool sizes varied positively with roof age. These dynamics suggest an accumulation of 2.9 +/- 1.1 g N/m2/yr with no indication of leveling off after 22 years. Plant N content (%) positively varied with roof age but plant biomass, plant nutrient pools, and plant diversity did not vary with age. These dynamics indicate a novel developmental scenario where the ecosystem begins with near-stable plant biomass but still accumulates N in the substrate at rates on par with many secondary successional systems. The apparent accumulation of N could not be accounted for by N deposition rates for the region, suggesting substantial N-fixation. The novel developmental dynamics outlined in this study point to the need for a new or expanded ecosystem developmental paradigm that better suits green roofs and perhaps other emerging engineered ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 42
Typ av publikation
tidskriftsartikel (36)
bokkapitel (2)
annan publikation (1)
konferensbidrag (1)
doktorsavhandling (1)
forskningsöversikt (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (37)
övrigt vetenskapligt/konstnärligt (4)
populärvet., debatt m.m. (1)
Författare/redaktör
Buffam, Ishi (40)
Bishop, Kevin (23)
Ode Sang, Åsa (2)
Aagaard Hagemann, Fr ... (1)
Randrup, Thomas (1)
Abbott, Benjamin W. (1)
visa fler...
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
Bret-Harte, M. Syndo ... (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Dorrepaal, Ellen (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
Goldammer, Johann G. (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (25)
Umeå universitet (16)
Uppsala universitet (13)
Stockholms universitet (7)
Lunds universitet (4)
Göteborgs universitet (2)
visa fler...
Örebro universitet (2)
Karlstads universitet (2)
Luleå tekniska universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (41)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (31)
Lantbruksvetenskap (19)
Teknik (2)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy