SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Butrym Marta) "

Sökning: WFRF:(Butrym Marta)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burdzinska, Anna, et al. (författare)
  • Intraurethral co-transplantation of bone marrow mesenchymal stem cells and muscle-derived cells improves the urethral closure
  • 2018
  • Ingår i: Stem Cell Research and Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cell therapy constitutes an attractive alternative to treat stress urinary incontinence. Although promising results have been demonstrated in this field, the procedure requires further optimization. The most commonly proposed cell types for intraurethral injections are muscle derived cells (MDCs) and mesenchymal stem/stromal cell (MSCs). The aim of this study was to evaluate the effects of MDC-MSC co-transplantation into the urethra. Methods: Autologous transplantation of labeled MDCs, bone marrow MSCs or co-transplantation of MDC-MSC were performed in aged multiparous female goats (n = 6 in each group). The mean number of cells injected per animal was 29.6 × 106(± 4.3 × 106). PBS-injected animals constituted the control group (n = 5). Each animal underwent urethral pressure profile (UPP) measurements before and after the injection procedure. The maximal urethral closure pressure (MUCP) and functional area (FA) of UPPs were calculated. The urethras were collected at the 28th or the 84th day after transplantation. The marker fluorochrome (DID) was visualized and quantified using in vivo imaging system in whole explants. Myogenic differentiation of the graft was immunohistochemically evaluated. Results: The grafted cells were identified in all urethras collected at day 28 regardless of injected cell type. At this time point the strongest DID-derived signal (normalized to the number of injected cells) was noted in the co-transplanted group. There was a distinct decline in signal intensity between day 28 and day 84 in all types of transplantation. Both MSCs and MDCs contributed to striated muscle formation if transplanted directly to the external urethral sphincter. In the MSC group those events were rare. If cells were injected into the submucosal region they remained undifferentiated usually packed in clearly distinguishable depots. The mean increase in MUCP after transplantation in comparison to the pre-transplantation state in the MDC, MSC and MDC-MSC groups was 12.3% (± 11.2%, not significant (ns)), 8.2% (± 9.6%, ns) and 24.1% (± 3.1%, p = 0.02), respectively. The mean increase in FA after transplantation in the MDC, MSC and MDC-MSC groups amounted to 17.8% (± 15.4%, ns), 15.2% (± 12.9%, ns) and 17.8% (± 2.5%, p = 0.04), respectively. Conclusions: The results suggest that MDC-MSC co-transplantation provides a greater chance of improvement in urethral closure than transplantation of each population alone.
  •  
2.
  • Butrym, Marta (författare)
  • Novel vaccines and antiviral treatments for enterovirus induced infections and disease
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Enterovirus infections are common around the world and can impact people’s lives in various ways, causing pancreatitis, myocarditis, common cold and more. This thesis is focused on testing the effectiveness of new vaccines and an antiviral agent in the context of cystic fibrosis (CF) and type 1 diabetes (T1D). Many enteroviruses cause respiratory infections. Due to their problematic lungs, patients with CF are extra susceptible to infections including those by viruses. In Paper I, we demonstrated that enteroviruses known as coxsackieviruses (CVB) are common in people with CF. We also showed that mice carrying the CF mutation most common in humans respond to a newly developed CVB vaccine by producing neutralising antibodies leading to protection against CVB infection. Poliovirus is another enterovirus and the inactivated poliovirus vaccine used in the Swedish national vaccination programme is similar to the new CVB vaccine. To understand how the CVB vaccine might work in people with CF, we measured neutralising antibodies against poliovirus in serum samples from patients. The results suggested that most individuals were able to establish robust immunity to poliovirus, indicating that the new CVB vaccine would provide similar immunity in the CF population. Paper II and Paper III focused on vaccine responses and virus infections associated with T1D. It has been suggested that enteroviruses are involved in T1D development. Establishing vaccination coverage and antiviral treatments might therefore be beneficial for susceptible individuals. In Paper II, we showed that a CVB vaccine is safe and does not accelerate autoimmune disease in a diabetes prone host. Moreover, we demonstrated that the CVB vaccine protected mice from infection-induced acceleration of autoimmune diabetes. This and previous studies by the group, paved the way for a clinical trial with an equivalent vaccine, PRV-101. In Paper III we investigated the antiviral properties of Vemurafenib, a cancer drug, as potential antiviral treatment against enteroviruses. We showed that this drug prevents infection of cells at the primary site of infection (epithelial cells lining the gut), as wells as insulin-producing cells, demonstrating the potential for next generation anti-enterovirus treatments. This thesis provides insight into the development of new vaccines and antiviral agents, mainly against CVBs with the goal of improving the lives of those affected by CF and preventing the development of T1D.
  •  
3.
  • Lim, Chun Hwee, et al. (författare)
  • Thrombin-derived host defence peptide modulates neutrophil rolling and migration in vitro and functional response in vivo
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Host defence peptides (HDPs) derived from the C-terminus of thrombin are proteolytically generated by enzymes released during inflammation and wounding. In this work, we studied the effects of the prototypic peptide GKY25 (GKYGFYTHVFRLKKWIQKVIDQFGE), on neutrophil functions. In vitro, GKY25 was shown to decrease LPS-induced neutrophil activation. In addition, the peptide induced CD62L shedding on neutrophils without inducing their activation. Correspondingly, GKY25-treated neutrophils showed reduced attachment and rolling behaviour on surfaces coated with the CD62L ligand E-selectin. The GKY25-treated neutrophils also displayed a dampened chemotactic response against the chemokine IL-8. Furthermore, in vivo, mice treated with GKY25 exhibited a reduced local ROS response against LPS. Taken together, our results show that GKY25 can modulate neutrophil functions in vitro and in vivo.
  •  
4.
  • Puthia, Manoj, et al. (författare)
  • A dual-action peptide-containing hydrogel targets wound infection and inflammation
  • 2020
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6242 .- 1946-6234. ; 12:524
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a clinical need for improved wound treatments that prevent both infection and excessive inflammation. TCP-25, a thrombin-derived peptide, is antibacterial and scavenges pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide, thereby preventing CD14 interaction and Toll-like receptor dimerization, leading to reduced downstream immune activation. Here, we describe the development of a hydrogel formulation that was functionalized with TCP-25 to target bacteria and associated PAMP-induced inflammation. In vitro studies determined the polymer prerequisites for such TCP-25-mediated dual action, favoring the use of noncharged hydrophilic hydrogels, which enabled peptide conformational changes and LPS binding. The TCP-25-functionalized hydrogels killed Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacteria in vitro, as well as in experimental mouse models of subcutaneous infection. The TCP-25 hydrogel also mediated reduction of LPS-induced local inflammatory responses, as demonstrated by analysis of local cytokine production and in vivo bioimaging using nuclear factor κB (NF-κB) reporter mice. In porcine partial thickness wound models, TCP-25 prevented infection with S. aureus and reduced concentrations of proinflammatory cytokines. Proteolytic fragmentation of TCP-25 in vitro yielded a series of bioactive TCP fragments that were identical or similar to those present in wounds in vivo. Together, the results demonstrate the therapeutic potential of TCP-25 hydrogel, a wound treatment based on the body's peptide defense, for prevention of both bacterial infection and the accompanying inflammation.
  •  
5.
  • Puthia, Manoj, et al. (författare)
  • Bioactive Suture with Added Innate Defense Functionality for the Reduction of Bacterial Infection and Inflammation
  • 2023
  • Ingår i: Advanced healthcare materials. - 2192-2659. ; 12:31
  • Tidskriftsartikel (refereegranskat)abstract
    • Surgical site infections (SSI) are a clinical and economic burden. Suture-associated SSI may develop when bacteria colonize the suture surface and form biofilms that are resistant to antibiotics. Thrombin-derived C-terminal peptide (TCP)-25 is a host defense peptide with a unique dual mode of action that can target both bacteria and the excessive inflammation induced by bacterial products. The peptide demonstrates therapeutic potential in preclinical in vivo wound infection models. In this study, the authors set out to explore whether TCP-25 can provide a new bioactive innate immune feature to hydrophilic polyglactin sutures (Vicryl). Using a combination of biochemical, biophysical, antibacterial, biofilm, and anti-inflammatory assays in vitro, in silico molecular modeling studies, along with experimental infection and inflammation models in mice, a proof-of-concept that TCP-25 can provide Vicryl sutures with a previously undisclosed host defense capacity, that enables targeting of bacteria, biofilms, and the accompanying inflammatory response, is shown.
  •  
6.
  • Puthia, Manoj, et al. (författare)
  • Bioactive Suture with Added Innate Defense Functionality for the Reduction of Bacterial Infection and Inflammation
  • 2023
  • Ingår i: Advanced Healthcare Materials. - : Wiley. - 2192-2640 .- 2192-2659. ; 12:31, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Surgical site infections (SSI) are a clinical and economic burden. Suture-associated SSI may develop when bacteria colonize the suture surface and form biofilms that are resistant to antibiotics. Thrombin-derived C-terminal peptide (TCP)-25 is a host defense peptide with a unique dual mode of action that can target both bacteria and the excessive inflammation induced by bacterial products. The peptide demonstrates therapeutic potential in preclinical in vivo wound infection models. In this study, the authors set out to explore whether TCP-25 can provide a new bioactive innate immune feature to hydrophilic polyglactin sutures (Vicryl). Using a combination of biochemical, biophysical, antibacterial, biofilm, and anti-inflammatory assays in vitro, in silico molecular modeling studies, along with experimental infection and inflammation models in mice, a proof-of-concept that TCP-25 can provide Vicryl sutures with a previously undisclosed host defense capacity, that enables targeting of bacteria, biofilms, and the accompanying inflammatory response, is shown.
  •  
7.
  • Strömdahl, Ann Charlotte, et al. (författare)
  • Peptide-coated polyurethane material reduces wound infection and inflammation
  • 2021
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061. ; 128, s. 314-331
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an urgent need for treatments that not only reduce bacterial infection that occurs during wounding but that also target the accompanying excessive inflammatory response. TCP-25, a thrombin-derived antibacterial peptide, scavenges toll-like receptor agonists such as endotoxins and lipoteichoic acid and prevents toll-like receptor-4 dimerization to reduce infection-related inflammation in vivo. Using a combination of biophysical, cellular, and microbiological assays followed by experimental studies in mouse and pig models, we show that TCP-25, when delivered from a polyurethane (PU) material, exerts anti-infective and anti-inflammatory effects in vitro and in vivo. Specifically, TCP-25 killed the common wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, in both in vitro and in vivo assays. Furthermore, after its release from the PU material, the peptide retained its capacity to induce its helical conformation upon endotoxin interaction, yielding reduced activation of NF-κB in THP-1 reporter cells, and diminished accumulation of inflammatory cells and subsequent release of IL-6 and TNF-α in subcutaneous implant models in vivo. Moreover, in a porcine partial thickness wound infection model, TCP-25 treated infection with S. aureus, and reduced the concomitant inflammatory response. Taken together, these findings demonstrate a combined antibacterial and anti-inflammatory effect of TCP-25 delivered from PU in vitro, and in mouse and porcine in vivo models of localized infection-inflammation. Statement of significance: Local wound infections may result in systemic complications and can be difficult to treat due to increasing antimicrobial resistance. Surgical site infections and biomaterial-related infections present a major challenge for hospitals. In recent years, various antimicrobial coatings have been developed for infection prevention and current concepts focus on various matrices with added anti-infective components, including various antibiotics and antiseptics. We have developed a dual action wound dressing concept where the host defense peptide TCP-25, when delivered from a PU material, targets both bacterial infection and the accompanying inflammation. TCP-25 PU showed efficacy in in vitro and experimental wound models in mouse and minipigs.
  •  
8.
  • Zarychta-Wiśniewska, Weronika, et al. (författare)
  • In vivo imaging system for explants analysis—A new approach for assessment of cell transplantation effects in large animal models
  • 2017
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Despite spectacular progress in cellular transplantology, there are still many concerns about the fate of transplanted cells. More preclinical studies are needed, especially on large animal models, to bridge the translational gap between basic research and the clinic. Herein, we propose a novel approach in analysis of cell transplantation effects in large animals explants using in vivo imaging system (IVIS®) or similar equipment. Material and methods: In the in vitro experiment cells labeled with fluorescent membrane dyes: DID (far red) or PKH26 (orange) were visualized with IVIS®. The correlation between the fluorescence signal and cell number with or without addition of minced muscle tissue was calculated. In the ex vivo study urethras obtained from goats after intraurethral cells (n = 9) or PBS (n = 4) injections were divided into 0.5 cm cross-slices and analyzed by using IVIS®. Automatic algorithm followed or not by manual setup was used to separate specific dye signal from tissue autofluorescence. The results were verified by systematic microscopic analysis of standard 10 μm specimens prepared from slices before and after immunohistochemical staining. Comparison of obtained data was performed using diagnostic test function. Results: Fluorescence signal strength in IVIS® was directly proportional to the number of cells regardless of the dye used and detectable for minimum 0.25x106 of cells. DID-derived signal was much less affected by the background signal in comparison to PKH26 in in vitro test. Using the IVIS® to scan explants in defined arrangement resulted in precise localization of DID but not PKH26 positive spots. Microscopic analysis of histological specimens confirmed the specificity (89%) and sensitivity (80%) of IVIS® assessment relative to DID dye. The procedure enabled successful immunohistochemical staining of specimens derived from analyzed slices. Conclusions: The IVIS® system under appropriate conditions of visualization and analysis can be used as a method for ex vivo evaluation of cell transplantation effects. Presented protocol allows for evaluation of cell delivery precision rate, enables semi-quantitative assessment of signal, preselects material for further analysis without interfering with the tissue properties. Far red dyes are appropriate fluorophores to cell labeling for this application.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy