SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buttaccio S.) "

Sökning: WFRF:(Buttaccio S.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Egron, E., et al. (författare)
  • Single-dish and VLBI observations of Cygnus X-3 during the 2016 giant flare episode
  • 2017
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 471:3, s. 2703-2714
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016 September, the microquasar Cygnus X-3 underwent a giant radio flare, which was monitored for 6 d with the Medicina Radio Astronomical Station and the Sardinia Radio Telescope. Long observations were performed in order to follow the evolution of the flare on an hourly scale, covering six frequency ranges from 1.5 to 25.6 GHz. The radio emission reached a maximum of 13.2 +/- 0.7 Jy at 7.2 GHz and 10 +/- 1 Jy at 18.6 GHz. Rapid flux variations were observed at high radio frequencies at the peak of the flare, together with rapid evolution of the spectral index: a steepened from 0.3 to 0.6 (with S-nu alpha nu(-alpha)) within 5 h. This is the first time that such fast variations are observed, giving support to the evolution from optically thick to optically thin plasmons in expansion moving outward from the core. Based on the Italian network (Noto, Medicina and SRT) and extended to the European antennas (Torun, Yebes, Onsala), very long baseline interferometry (VLBI) observations were triggered at 22 GHz on five different occasions, four times prior to the giant flare, and once during its decay phase. Flux variations of 2 h duration were recorded during the first session. They correspond to a mini-flare that occurred close to the core 10 d before the onset of the giant flare. From the latest VLBI observation we infer that 4 d after the flare peak the jet emission was extended over 30 mas.
  •  
2.
  • Kirsten, Franz, 1983, et al. (författare)
  • A repeating fast radio burst source in a globular cluster
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 602:7898, s. 585-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are flashes of unknown physical origin1. The majority of FRBs have been seen only once, although some are known to generate multiple flashes2,3. Many models invoke magnetically powered neutron stars (magnetars) as the source of the emission4,5. Recently, the discovery6 of another repeater (FRB 20200120E) was announced, in the direction of the nearby galaxy M81, with four potential counterparts at other wavelengths6. Here we report observations that localized the FRB to a globular cluster associated with M81, where it is 2 parsecs away from the optical centre of the cluster. Globular clusters host old stellar populations, challenging FRB models that invoke young magnetars formed in a core-collapse supernova. We propose instead that FRB 20200120E originates from a highly magnetized neutron star formed either through the accretion-induced collapse of a white dwarf, or the merger of compact stars in a binary system7. Compact binaries are efficiently formed inside globular clusters, so a model invoking them could also be responsible for the observed bursts.
  •  
3.
  • Wagner, J., et al. (författare)
  • First 230? : GHz VLBI fringes on 3C 279 using the APEX Telescope (Research Note)
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 581
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We report about a 230? GHz very long baseline interferometry (VLBI) fringe finder observation of blazar 3C 279 with the APEX telescope in Chile, the phased submillimeter array (SMA), and the SMT of the Arizona Radio Observatory (ARO). Methods. We installed VLBI equipment and measured the APEX station position to 1? cm accuracy (1σ). We then observed 3C 279 on 2012 May 7 in a 5? h 230? GHz VLBI track with baseline lengths of 2800? Mλ to 7200? Mλ and a finest fringe spacing of 28.6? μas. Results. Fringes were detected on all baselines with signal-to-noise ratios of 12 to 55 in 420? s. The correlated flux density on the longest baseline was ∼0.3? Jy beam-1, out of a total flux density of 19.8? Jy. Visibility data suggest an emission region ≤ 38? μas in size, and at least two components, possibly polarized. We find a lower limit of the brightness temperature of the inner jet region of about 1010? K. Lastly, we find an upper limit of 20% on the linear polarization fraction at a fringe spacing of ∼ 38? μas. Conclusions. With APEX the angular resolution of 230? GHz VLBI improves to 28.6? μas. This allows one to resolve the last-photon ring around the Galactic Center black hole event horizon, expected to be 40? μas in diameter, and probe radio jet launching at unprecedented resolution, down to a few gravitational radii in galaxies like M 87. To probe the structure in the inner parsecs of 3C 279 in detail, follow-up observations with APEX and five other mm-VLBI stations have been conducted (March 2013) and are being analyzed.
  •  
4.
  • Nimmo, K., et al. (författare)
  • Burst timescales and luminosities as links between young pulsars and fast radio bursts
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:3, s. 393-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are extragalactic radio flashes of unknown physical origin. Their high luminosities and short durations require extreme energy densities, such as those found in the vicinity of neutron stars and black holes. Studying the burst intensities and polarimetric properties on a wide range of timescales, from milliseconds down to nanoseconds, is key to understanding the emission mechanism. However, high-time-resolution studies of FRBs are limited by their unpredictable activity levels, available instrumentation and temporal broadening in the intervening ionized medium. Here we show that the repeating FRB 20200120E can produce isolated shots of emission as short as about 60 nanoseconds in duration, with brightness temperatures as high as 3 × 1041 K (excluding relativistic effects), comparable with ‘nano-shots’ from the Crab pulsar. Comparing both the range of timescales and luminosities, we find that FRB 20200120E observationally bridges the gap between known Galactic young pulsars and magnetars and the much more distant extragalactic FRBs. This suggests a common magnetically powered emission mechanism spanning many orders of magnitude in timescale and luminosity. In this Article, we probe a relatively unexplored region of the short-duration transient phase space; we highlight that there probably exists a population of ultrafast radio transients at nanosecond to microsecond timescales, which current FRB searches are insensitive to.
  •  
5.
  • Hewitt, Dante M., et al. (författare)
  • Milliarcsecond localization of the hyperactive repeating FRB 20220912A
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:2, s. 1814-1826
  • Tidskriftsartikel (refereegranskat)abstract
    • We present very long-baseline interferometry (VLBI) observations of the hyperactive repeating FRB 20220912A using the European VLBI Network (EVN) outside of regular observing sessions (EVN-Lite). We detected 150 bursts from FRB 20220912A over two observing epochs in 2022 October. Combining the burst data allows us to localize FRB 20220912A to a precision of a few milliarcseconds, corresponding to a transverse scale of less than 10 pc at the distance of the source. This precise localization shows that FRB 20220912A lies closer to the centre of its host galaxy than previously found, although still significantly offset from the host galaxy's nucleus. On arcsecond scales, FRB 20220912A is coincident with a persistent continuum radio source known from archival observations; however, we find no compact persistent emission on milliarcsecond scales. The 5σ upper limit on the presence of such a compact persistent radio source is 120 μJy, corresponding to a luminosity limit of (D/362.4 Mpc)erg s-1 Hz-1. The persistent radio emission is thus likely to be from star formation in the host galaxy. This is in contrast to some other active FRBs, such as FRB 20121102A and FRB 20190520B.
  •  
6.
  • Nimmo, K., et al. (författare)
  • A burst storm from the repeating FRB 20200120E in an M81 globular cluster
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:2, s. 2281-2305
  • Tidskriftsartikel (refereegranskat)abstract
    • The repeating fast radio burst (FRB) source FRB 20200120E is exceptional because of its proximity and association with a globular cluster. Here we report 60 bursts detected with the Effelsberg telescope at 1.4 GHz. We observe large variations in the burst rate, and report the first FRB 20200120E 'burst storm', where the source suddenly became active and 53 bursts (fluence ≥0.04 Jy ms) occurred within only 40 min. We find no strict periodicity in the burst arrival times, nor any evidence for periodicity in the source's activity between observations. The burst storm shows a steep energy distribution (power-law index α = 2.39 ± 0.12) and a bimodal wait-time distribution, with log-normal means of 0.94+0.07−0.06 s and 23.61+3.06−2.71 s. We attribute these wait-time distribution peaks to a characteristic event time-scale and pseudo-Poisson burst rate, respectively. The secondary wait-time peak at ∼1 s is ∼50 × longer than the ∼24 ms time-scale seen for both FRB 20121102A and FRB 20201124A - potentially indicating a larger emission region, or slower burst propagation. FRB 20200120E shows order-of-magnitude lower burst durations and luminosities compared with FRB 20121102A and FRB 20201124A. Lastly, in contrast to FRB 20121102A, which has observed dispersion measure (DM) variations of ΔDM > 1 pc cm−3 on month-to-year time-scales, we determine that FRB 20200120E's DM has remained stable (ΔDM < 0.15 pc cm−3) over >10 months. Overall, the observational characteristics of FRB 20200120E deviate quantitatively from other active repeaters, but it is unclear whether it is qualitatively a different type of source.
  •  
7.
  • Tuccari, G., et al. (författare)
  • DBBC3 development
  • 2014
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • The RadioNet3 JRA project named 'DBBC3' is progressing as planned. The first units of the 4 GHz bandwidth samplers are available as well as the CORE3 processing elements. The first functional mode for both of them has been successfully tested and the construction of two further DBBC3 units is under way. The main parts of the system are shown together with their performance, and an overview of the implementation is presented for data-rates of 32 and 64 Gbps with two examples of their application: a) astronomical for the EVN and for millimetre VLBI with the EHT (Event Horizon Telescope), and b) geodetic for the VGOS broadband network.
  •  
8.
  • Tuccari, G., et al. (författare)
  • DBBC3: VLBI at 32 Gbits per second
  • 2012
  • Ingår i: Proceedings of Science. - 1824-8039. ; 2012-October
  • Konferensbidrag (refereegranskat)abstract
    • The project to develop the third generation of a digital backend system (DBBC3) for VLBI and other applications is presented, including an overview of the evolution of this system. The initial development started about ten years ago and evolved in the course of time by improving all its components: hardware, firmware and software going from DBBC1 to DBBC2. The latest, now third generation will be able to fully implement digitally all the functionality required of a complete 32 Gbps VLBI backend for the EVN and VLBI2010. The architecture and adopted methods are described. The implementation of the astronomical version is financially supported by RadioNet3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy