SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Calbet A) "

Sökning: WFRF:(Calbet A)

  • Resultat 1-25 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Catalán, Núria, 1985-, et al. (författare)
  • Behind the Scenes : mechanisms Regulating Climatic Patterns of Dissolved Organic Carbon Uptake in Headwater Streams
  • 2018
  • Ingår i: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 32:10, s. 1528-1541
  • Tidskriftsartikel (refereegranskat)abstract
    • Large variability in dissolved organic carbon (DOC) uptake rates has been reported for headwater streams, but the causes of this variability are still not well understood. Here we assessed acetate uptake rates across 11 European streams comprising different ecoregions by using whole-reach pulse acetate additions. We evaluated the main climatic and biogeochemical drivers of acetate uptake during two seasonal periods. Our results show a minor influence of sampling periods but a strong effect of climate and dissolved organic matter (DOM) composition on acetate uptake. In particular, mean annual precipitation explained half of the variability of the acetate uptake velocities (Vf(Acetate)) across streams. Temperate streams presented the lowest Vf(Acetate), together with humic-like DOM and the highest stream respiration rates. In contrast, higher Vf(Acetate) were found in semiarid streams, with protein-like DOM, indicating a dominance of reactive, labile compounds. This, together with lower stream respiration rates and molar ratios of DOC to nitrate, suggests a strong C limitation in semiarid streams, likely due to reduced inputs from the catchment. Overall, this study highlights the interplay of climate and DOM composition and its relevance to understand the biogeochemical mechanisms controlling DOC uptake in streams. Plain Language Summary Headwater streams receive and degrade organic carbon and nutrients from the surrounding catchments. That degradation can be assessed by measuring the uptake of simple compounds of carbon or nitrogen such as acetate or nitrate. Here we determine the variability in acetate and nitrate uptake rates across headwater streams and elucidate the mechanisms behind that variability. The balance between nutrients, the composition of the organic materials present in the streams, and the climatic background is at interplay.
  •  
3.
  •  
4.
  • Sala, M. M., et al. (författare)
  • Contrasting effects of ocean acidification on the microbial food web under different trophic conditions
  • 2016
  • Ingår i: ICES Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 73:3, s. 670-679
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the effects of an increase in dissolved CO2 on the microbial communities of the Mediterranean Sea during two mesocosm experiments in two contrasting seasons: winter, at the peak of the annual phytoplankton bloom, and summer, under low nutrient conditions. The experiments included treatments with acidification and nutrient addition, and combinations of the two. We followed the effects of ocean acidification (OA) on the abundance of the main groups of microorganisms (diatoms, dinoflagellates, nanoeukaryotes, picoeukaryotes, cyanobacteria, and heterotrophic bacteria) and on bacterial activity, leucine incorporation, and extracellular enzyme activity. Our results showed a clear stimulation effect of OA on the abundance of small phytoplankton (pico- and nanoeukaryotes), independently of the season and nutrient availability. A large number of the measured variables showed significant positive effects of acidification in summer compared with winter, when the effects were sometimes negative. Effects of OA were more conspicuous when nutrient concentrations were low. Our results therefore suggest that microbial communities in oligotrophic waters are considerably affected by OA, whereas microbes in more productive waters are less affected. The overall enhancing effect of acidification on eukaryotic pico- and nanophytoplankton, in comparison with the non-significant or even negative response to nutrient-rich conditions of larger groups and autotrophic prokaryotes, suggests a shift towards medium-sized producers in a future acidified ocean.
  •  
5.
  • Cardinale, Daniele A., 1982-, et al. (författare)
  • Superior Intrinsic Mitochondrial Respiration in Women Than in Men.
  • 2018
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Sexual dimorphism is apparent in humans, however, to date no studies have investigated mitochondrial function focusing on intrinsic mitochondrial respiration (i.e., mitochondrial respiration for a given amount of mitochondrial protein) and mitochondrial oxygen affinity (p50mito) in relation to biological sex in human. A skeletal muscle biopsy was donated by nine active women, and ten men matched for maximal oxygen consumption (VO2max) and by nine endurance trained men. Intrinsic mitochondrial respiration, assessed in isolated mitochondria, was higher in women compared to men when activating complex I (CIP) and complex I+II (CI+IIP) (p < 0.05), and was similar to trained men (CIP, p = 0.053; CI+IIP, p = 0.066). Proton leak and p50mito were higher in women compared to men independent of VO2max. In conclusion, significant novel differences in mitochondrial oxidative function, intrinsic mitochondrial respiration and p50mito exist between women and men. These findings may represent an adaptation in the oxygen cascade in women to optimize muscle oxygen uptake to compensate for a lower oxygen delivery during exercise.
  •  
6.
  • Larsen, Filip J, 1977-, et al. (författare)
  • Mitochondrial oxygen affinity increases after sprint interval training and is related to the improvement in peak oxygen uptake.
  • 2020
  • Ingår i: Acta Physiologica. - : John Wiley & Sons. - 1748-1708 .- 1748-1716. ; 229:3
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: The body responds to exercise training by profound adaptations throughout the cardiorespiratory and muscular systems, which may result in improvements in maximal oxygen consumption (VO2 peak) and mitochondrial capacity. By convenience, mitochondrial respiration is often measured at supra-physiological oxygen levels, an approach that ignores any potential regulatory role of mitochondrial affinity for oxygen (p50mito ) at physiological oxygen levels.METHODS: In this study, we examined the p50mito of mitochondria isolated from the Vastus lateralis and Triceps brachii in 12 healthy volunteers before and after a training intervention with 7 sessions of sprint interval training using both leg cycling and arm cranking. The changes in p50mito were compared to changes in whole-body VO2 peak.RESULTS: We here show that p50mito is similar in isolated mitochondria from the Vastus (40 ± 3.8 Pa) compared to Triceps (39 ± 3.3) but decreases (mitochondrial oxygen affinity increases) after 7 sessions of sprint interval training (to 26 ± 2.2 Pa in Vastus and 22 ± 2.7 Pa in Triceps, both p<0.01). The change in VO2 peak modeled from changes in p50mito was correlated to actual measured changes in VO2 peak (R2 =0.41, p=0.002).CONCLUSION: Together with mitochondrial respiratory capacity, p50mito is a critical factor when measuring mitochondrial function, it can decrease with sprint interval training and should be considered in the integrative analysis of the oxygen cascade from lung to mitochondria.
  •  
7.
  • Arias, A., et al. (författare)
  • Predator Chemical Cue Effects on the Diel Feeding Behaviour of Marine Protists
  • 2021
  • Ingår i: Microbial Ecology. - : Springer Science and Business Media LLC. - 0095-3628 .- 1432-184X. ; 82:2, s. 356-364
  • Tidskriftsartikel (refereegranskat)abstract
    • We have assessed the effect of copepod chemical cues on the diel feeding rhythms of heterotrophic and mixotrophic marine protists. All phagotrophic protists studied exhibited relatively high diurnal feeding rates. The magnitude of the diel feeding rhythm, expressed as the quotient of day and night ingestion rates, was inversely related to the time that phagotrophic protists were maintained in the laboratory in an environment without predators. In the case of the recently isolated ciliate Strombidium arenicola, the rhythm was lost after a few months. When challenged with chemical alarm signals (copepodamides) from the copepod Calanus finmarchicus at realistic concentrations (0.6-6 pM), S. arenicola partially re-established diurnal feeding. Conversely, the amplitude of the diel feeding rhythm for the ciliate Mesodinium rubrum was not affected by copepodamides, although the 24-h integrated food intake increased by approximately 23%. For the dinoflagellates Gyrodinium dominans and Karlodinium armiger, copepodamides significantly reduced the amplitude of their diel feeding rhythms; significant positive effects on total daily ingestion were only observed in G. dominans. Finally, the dinoflagellate Oxyrrhis marina, isolated >20 years ago, showed inconsistent responses to copepodamides, except for an average 6% increase in its total ingestion over 24 h. Our results demonstrate that the predation risk by copepods affects the diel feeding rhythm of marine protists and suggests a species-specific response to predation threats.
  •  
8.
  •  
9.
  • Calbet, Albert, et al. (författare)
  • Future Climate Scenarios for a Coastal Productive Planktonic Food Web Resulting in Microplankton Phenology Changes and Decreased Trophic Transfer Efficiency
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:4, s. e94388-
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the effects of future climate change scenarios on plankton communities of a Norwegian fjord using a mesocosm approach. After the spring bloom, natural plankton were enclosed and treated in duplicates with inorganic nutrients elevated to pre-bloom conditions (N, P, Si; eutrophication), lowering of 0.4 pH units (acidification), and rising 3 degrees C temperature (warming). All nutrient-amended treatments resulted in phytoplankton blooms dominated by chain-forming diatoms, and reached 13-16 mu g chlorophyll (chl) a l(-1). In the control mesocosms, chl a remained below 1 mu g l(-1). Acidification and warming had contrasting effects on the phenology and bloom-dynamics of autotrophic and heterotrophic microplankton. Bacillariophyceae, prymnesiophyceae, cryptophyta, and Protoperidinium spp. peaked earlier at higher temperature and lower pH. Chlorophyta showed lower peak abundances with acidification, but higher peak abundances with increased temperature. The peak magnitude of autotrophic dinophyceae and ciliates was, on the other hand, lowered with combined warming and acidification. Over time, the plankton communities shifted from autotrophic phytoplankton blooms to a more heterotrophic system in all mesocosms, especially in the control unaltered mesocosms. The development of mass balance and proportion of heterotrophic/autotrophic biomass predict a shift towards a more autotrophic community and less-efficient food web transfer when temperature, nutrients and acidification are combined in a future climate-change scenario. We suggest that this result may be related to a lower food quality for microzooplankton under acidification and warming scenarios and to an increase of catabolic processes compared to anabolic ones at higher temperatures.
  •  
10.
  • Calbet, José A L, et al. (författare)
  • Limitations to oxygen transport and utilisation during sprint exercise in humans : evidence for a functional reserve in muscle O2 diffusing capacity.
  • 2015
  • Ingår i: Journal of Physiology. - 0022-3751 .- 1469-7793. ; 593:20, s. 4649-4664
  • Tidskriftsartikel (refereegranskat)abstract
    • KEY POINTS SUMMARY: Severe acute hypoxia reduces sprint performance. Muscle VO2 during sprint exercise in normoxia is not limited by O2 delivery, O2 off-loading from haemoglobin or structure-dependent diffusion constraints in the skeletal muscle of young healthy men. A large functional reserve in muscle O2 diffusing capacity exists and remains available at exhaustion during exercise in normoxia, which is recruited during exercise in hypoxia. During whole-body incremental exercise to exhaustion in severe hypoxia leg VO2 is primarily dependent on convective O2 delivery and less limited by diffusion constraints than previously thought. The kinetics of O2 off-loading from haemoglobin does not limit VO2 peak in hypoxia. Our results indicate that the limitation to VO2 during short sprints resides in mechanisms regulating mitochondrial respiration.ABSTRACT: To determine the contribution of convective and diffusive limitations to VO2 peak during exercise in humans oxygen transport and haemodynamics were measured in eleven men (22 ± 2 years) during incremental (IE) and 30-s all-out sprints (Wingate test, WgT), in normoxia (Nx, PI O2 :143 mmHg) and hypoxia (Hyp, PI O2 :73 mmHg). Carboxyhaemoglobin (COHb) was increased to 6-7% before both WgTs to left-shift the oxyhaemoglobin dissociation curve. Leg VO2 was measured by the Fick method, and leg blood flow (BF) with thermodilution and muscle O2 diffusing capacity (DMO2 ) was calculated. In the WgT mean power output, leg BF, leg O2 delivery and leg VO2 were 7, 5, 28 and 23% lower in Hyp than Nx (P < 0.05), however, peak WgT DMO2 was higher in hypoxia (51.5 ± 9.7) than Nx (20.5 ± 3.0 ml min(-1) mmHg(-1) , P < 0.05). Despite a similar PaO2 (33.3 ± 2.4 and 34.1 ± 3.3 mmHg), mean capillary PO2 (16.7 ± 1.2 and 17.1 ± 1.6 mmHg), and peak perfusion during IE and WgT in Hyp, DMO2 and leg VO2 were 12 and 14% higher during WgT than IE in Hyp (both, P < 0.05). DMO2 was apparently insensitive to COHb (COHb: 0.7 vs 7%, in IE Hyp and WgT Hyp). At exhaustion, the Y equilibration index was well above 1.0 in both conditions, reflecting greater convective than diffusive limitation to the O2 transfer both in Nx and Hyp. In conclusion, muscle VO2 during sprint exercise is not limited by O2 delivery, the O2 off-loading from haemoglobin or structure-dependent diffusion constraints in the skeletal muscle. These findings reveal a remarkable functional reserve in muscle O2 diffusing capacity. This article is protected by copyright. All rights reserved.
  •  
11.
  • Cardinale, Daniele A., 1982-, et al. (författare)
  • Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise : role of mitochondrial oxygen affinity.
  • 2019
  • Ingår i: Acta Physiologica. - : Wiley-Blackwell. - 1748-1708 .- 1748-1716. ; 225:1
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM:We examined the Fick components together with mitochondrial O2 affinity (p50mito ) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER).METHODS:Seven individuals performed two incremental exercise tests to exhaustion on a bicycle ergometer (BIKE) and two on a one-legged knee extension ergometer (KE) in NORM or HYPER. Leg blood flow and VO2 were determined by thermodilution and the Fick method. Maximal ADP-stimulated mitochondrial respiration (OXPHOS) and p50mito were measured ex vivo in isolated mitochondria. Mitochondrial excess capacity in the leg was determined from OXPHOS in permeabilized fibers and muscle mass measured with magnetic resonance imaging in relation to peak leg O2 delivery.RESULTS:The ex vivo p50mito increased from 0.06±0.02 to 0.17±0.04 kPa with varying substrate supply and O2 flux rates from 9.84±2.91 to 16.34±4.07 pmol O2 ·s-1 ·μg-1 respectively. O2 extraction decreased from 83% in BIKE to 67% in KE as a function of a higher O2 delivery, and lower mitochondrial excess capacity. There was a significant relationship between O2 extraction and mitochondrial excess capacity and p50mito that was unrelated to blood flow and mean transit time.CONCLUSION:O2 extraction varies with mitochondrial respiration rate, p50mito and O2 delivery. Mitochondrial excess capacity maintains a low p50mito which enhances O2 diffusion from microvessels to mitochondria during exercise. This article is protected by copyright. All rights reserved.
  •  
12.
  • Larsen, Filip J, et al. (författare)
  • High-intensity sprint training inhibits mitochondrial respiration through aconitase inactivation
  • 2016
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 30:1, s. 417-427
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense exercise training is a powerful stimulus that activates mitochondrial biogenesis pathways and thus increases mitochondrial density and oxidative capacity. Moderate levels of reactive oxygen species (ROS) during exercise are considered vital in the adaptive response, but high ROS production is a serious threat to cellular homeostasis. Although biochemical markers of the transition from adaptive to maladaptive ROS stress are lacking, it is likely mediated by redox sensitive enzymes involved in oxidative metabolism. One potential enzyme mediating such redox sensitivity is the citric acid cycle enzyme aconitase. In this study, we examined biopsy specimens of vastus lateralis and triceps brachii in healthy volunteers, together with primary human myotubes. An intense exercise regimen inactivated aconitase by 55-72%, resulting in inhibition of mitochondrial respiration by 50-65%. In the vastus, the mitochondrial dysfunction was compensated for by a 15-72% increase in mitochondrial proteins, whereas H2O2 emission was unchanged. In parallel with the inactivation of aconitase, the intermediary metabolite citrate accumulated and played an integral part in cellular protection against oxidative stress. In contrast, the triceps failed to increase mitochondrial density, and citrate did not accumulate. Instead, mitochondrial H2O2 emission was decreased to 40% of the pretraining levels, together with a 6-fold increase in protein abundance of catalase. In this study, a novel mitochondrial stress response was highlighted where accumulation of citrate acted to preserve the redox status of the cell during periods of intense exercise.
  •  
13.
  • Martin-Rincon, M., et al. (författare)
  • Exercise mitigates the loss of muscle mass by attenuating the activation of autophagy during severe energy deficit
  • 2019
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The loss of skeletal muscle mass with energy deficit is thought to be due to protein breakdown by the autophagy-lysosome and the ubiquitin-proteasome systems. We studied the main signaling pathways through which exercise can attenuate the loss of muscle mass during severe energy deficit (5500 kcal/day). Overweight men followed four days of caloric restriction (3.2 kcal/kg body weight day) and prolonged exercise (45 min of one-arm cranking and 8 h walking/day), and three days of control diet and restricted exercise, with an intra-subject design including biopsies from muscles submitted to distinct exercise volumes. Gene expression and signaling data indicate that the main catabolic pathway activated during severe energy deficit in skeletal muscle is the autophagy-lysosome pathway, without apparent activation of the ubiquitin-proteasome pathway. Markers of autophagy induction and flux were reduced by exercise primarily in the muscle submitted to an exceptional exercise volume. Changes in signaling are associated with those in circulating cortisol, testosterone, cortisol/testosterone ratio, insulin, BCAA, and leucine. We conclude that exercise mitigates the loss of muscle mass by attenuating autophagy activation, blunting the phosphorylation of AMPK/ULK1/Beclin1, and leading to p62/SQSTM1 accumulation. This includes the possibility of inhibiting autophagy as a mechanism to counteract muscle loss in humans under severe energy deficit. 
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Blomstrand, Eva, et al. (författare)
  • Exercise training induces similar elevations in the activity of oxoglutarate dehydrogenase and peak oxygen uptake in the human quadriceps muscle.
  • 2011
  • Ingår i: Pflügers Archiv. - : Springer Science and Business Media LLC. - 0031-6768 .- 1432-2013. ; 462:2, s. 257-65
  • Tidskriftsartikel (refereegranskat)abstract
    • During exercise involving a small muscle mass, peak oxygen uptake is thought to be limited by peripheral factors, such as the degree of oxygen extraction from the blood and/or mitochondrial oxidative capacity. Previously, the maximal activity of the Krebs cycle enzyme oxoglutarate dehydrogenase has been shown to provide a quantitative measure of maximal oxidative metabolism, but it is not known whether the increase in this activity after a period of training reflects the elevation in peak oxygen consumption. Fourteen subjects performed one-legged knee extension exercise for 5-7 weeks, while the other leg remained untrained. Thereafter, the peak oxygen uptake by the quadriceps muscle was determined for both legs, and muscle biopsies were taken for assays of maximal enzyme activities (at 25°C). The peak oxygen uptake was 26% higher in the trained than in the untrained muscle (395 vs. 315 ml min(-1) kg(-1), respectively; P<0.01). The maximal activities of the Krebs cycle enzymes in the trained and untrained muscle were as follows: citrate synthase, 22.4 vs. 18.2 μmol min(-1) g(-1) (23%, P<0.05); oxoglutarate dehydrogenase, 1.88 vs. 1.54 μmol min(-1) g(-1) (22%, P<0.05); and succinate dehydrogenase, 3.88 vs. 3.28 μmol min(-1) g(-1) (18%, P<0.05). The difference between the trained and untrained muscles with respect to peak oxygen uptake (80 ml min(-1) kg(-1)) corresponded to a flux through the Krebs cycle of 1.05 μmol min(-1) g(-1), and the corresponding difference in oxoglutarate dehydrogenase activity (at 38°C) was 0.83 μmol min(-1) g(-1). These parallel increases suggest that there is no excess mitochondrial capacity during maximal exercise with a small muscle mass.
  •  
18.
  • Boushel, Robert, et al. (författare)
  • Low-intensity training increases peak arm VO2 by enhancing both convective and diffusive O2 delivery.
  • 2014
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 211:1, s. 122-134
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: It is an ongoing discussion the extent to which oxygen delivery and oxygen extraction contribute to an increased muscle oxygen uptake during dynamic exercise. It has been proposed that local muscle factors including the capillary bed and mitochondrial oxidative capacity play a large role in prolonged low-intensity training of a small muscle group when the cardiac output capacity is not directly limiting. The purpose of this study was to investigate the relative roles of circulatory and muscle metabolic mechanisms by which prolonged low-intensity exercise training alters regional muscle VO2 .METHODS: In nine healthy volunteers (seven males, two females), haemodynamic and metabolic responses to incremental arm cycling were measured by the Fick method and biopsy of the deltoid and triceps muscles before and after 42 days of skiing for 6 h day(-1) at 60% max heart rate.RESULTS: Peak pulmonary VO2 during arm crank was unchanged after training (2.38 ± 0.19 vs. 2.18 ± 0.2 L min(-1) pre-training) yet arm VO2 (1.04 ± 0.08 vs. 0.83 ± 0.1 L min(1) , P < 0.05) and power output (137 ± 9 vs. 114 ± 10 Watts) were increased along with a higher arm blood flow (7.9 ± 0.5 vs. 6.8 ± 0.6 L min(-1) , P < 0.05) and expanded muscle capillary volume (76 ± 7 vs. 62 ± 4 mL, P < 0.05). Muscle O2 diffusion capacity (16.2 ± 1 vs. 12.5 ± 0.9 mL min(-1)  mHg(-1) , P < 0.05) and O2 extraction (68 ± 1 vs. 62 ± 1%, P < 0.05) were enhanced at a similar mean capillary transit time (569 ± 43 vs. 564 ± 31 ms) and P50 (35.8 ± 0.7 vs. 35 ± 0.8), whereas mitochondrial O2 flux capacity was unchanged (147 ± 6 mL kg min(-1) vs. 146 ± 8 mL kg min(-1) ).CONCLUSION: The mechanisms underlying the increase in peak arm VO2 with prolonged low-intensity training in previously untrained subjects are an increased convective O2 delivery specifically to the muscles of the arm combined with a larger capillary-muscle surface area that enhance diffusional O2 conductance, with no apparent role of mitochondrial respiratory capacity.
  •  
19.
  • Boushel, Robert, et al. (författare)
  • Maintained peak leg and pulmonary VO2 despite substantial reduction in muscle mitochondrial capacity.
  • 2015
  • Ingår i: Scandinavian Journal of Medicine and Science in Sports. - : Wiley. - 0905-7188 .- 1600-0838. ; 25:Suppl 4, s. 135-143
  • Tidskriftsartikel (refereegranskat)abstract
    • We recently reported the circulatory and muscle oxidative capacities of the arm after prolonged low-intensity skiing in the arctic (Boushel et al., 2014). In the present study, leg VO2 was measured by the Fick method during leg cycling while muscle mitochondrial capacity was examined on a biopsy of the vastus lateralis in healthy volunteers (7 male, 2 female) before and after 42 days of skiing at 60% HR max. Peak pulmonary VO2 (3.52 ± 0.18 L.min(-1) pre vs 3.52 ± 0.19 post) and VO2 across the leg (2.8 ± 0.4L.min(-1) pre vs 3.0 ± 0.2 post) were unchanged after the ski journey. Peak leg O2 delivery (3.6 ± 0.2 L.min(-1) pre vs 3.8 ± 0.4 post), O2 extraction (82 ± 1% pre vs 83 ± 1 post), and muscle capillaries per mm(2) (576 ± 17 pre vs 612 ± 28 post) were also unchanged; however, leg muscle mitochondrial OXPHOS capacity was reduced (90 ± 3 pmol.sec(-1) .mg(-1) pre vs 70 ± 2 post, P < 0.05) as was citrate synthase activity (40 ± 3 μmol.min(-1) .g(-1) pre vs 34 ± 3 vs P < 0.05). These findings indicate that peak muscle VO2 can be sustained with a substantial reduction in mitochondrial OXPHOS capacity. This is achieved at a similar O2 delivery and a higher relative ADP-stimulated mitochondrial respiration at a higher mitochondrial p50. These findings support the concept that muscle mitochondrial respiration is submaximal at VO2max , and that mitochondrial volume can be downregulated by chronic energy demand.
  •  
20.
  • Calbet, J. A. L., et al. (författare)
  • A time-efficient reduction of fat mass in 4 days with exercise and caloric restriction
  • 2015
  • Ingår i: Scandinavian Journal of Medicine and Science in Sports. - : Wiley. - 0905-7188 .- 1600-0838. ; 25:2, s. 223-233
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine whether a fast reduction in fat mass can be achieved in 4 days by combining caloric restriction (CR: 3.2kcal/kg body weight per day) with exercise (8-h walking+45-min arm cranking per day) to induce an energy deficit of approximate to 5000kcal/day, 15 overweight men underwent five experimental phases: pretest, exercise+CR for 4 days (WCR), control diet+reduced exercise for 3 days (DIET), and follow-up 4 weeks (POST1) and 1 year later (POST2). During WCR, the diet consisted solely of whey protein (n=8) or sucrose (n=7) (0.8g/kg body weight per day). After WCR, DIET, POST1, and POST2, fat mass was reduced by a mean of 2.1, 2.8, 3.8, and 1.9kg (P<0.05), with two thirds of this loss from the trunk; and lean mass by 2.8, 1.0, 0.5, and 0.4kg, respectively. After WCR, serum glucose, insulin, homeostatic model assessment, total and low-density lipoprotein cholesterol and triglycerides were reduced, and free fatty acid and cortisol increased. Serum leptin was reduced by 64%, 50%, and 33% following WCR, DIET, and POST1, respectively (P<0.05). The effects were similar in both groups. In conclusion, a clinically relevant reduction in fat mass can be achieved in overweight men in just 4 days by combining prolonged exercise with CR.
  •  
21.
  • Calbet, Jose A L, et al. (författare)
  • Assessment of cardiac output with transpulmonary thermodilution during exercise in humans.
  • 2015
  • Ingår i: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 118:1, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • The accuracy and reproducibility of transpulmonary thermodilution (TPTd) to assess cardiac output (Q) in exercising men was determined using indocyanine green (ICG) dilution as a reference method. TPTd has been utilized for the assessment of Q and preload indices of global end-diastolic volume (GEDV) and intrathoracic blood volume (ITBV), as well as extravascular lung water (EVLW) in resting humans. It remains unknown if this technique is also accurate and reproducible during exercise. Sixteen healthy men underwent catheterization of the right femoral vein (for iced saline injection), an antecubital vein (ICG injection) and femoral artery (thermistor) to determine their Q by TPTd and [ICG] during incremental 1 and 2-legged pedaling on a cycle ergometer, and combined arm cranking with leg pedaling to exhaustion. There was a close relationship between Td-Q and ICG-Q (r=0.95, n=151, SEE: 1.452 L/min, P<0.001; mean difference of 0.06 L/min; limits of agreement -2.98 to 2.86 L/min), and TPTd-Q and ICG-Q increased linearly with VO2 with similar intercepts and slopes. Both methods had mean coefficients of variation (CV) close to 5% for Q, GEDV and ITBV. The mean CV of EVLW, assessed with both indicators (ICG and thermal) was 17%, and was sensitive enough as to detect a reduction in EVLW of 107 ml when changing from resting supine to upright exercise. In summary, transpulmonary thermodilution with bolus injection into the femoral vein is an accurate and reproducible method to assess cardiac output during exercise in humans.
  •  
22.
  • Calbet, J.A.L., et al. (författare)
  • Chronic hypoxia increases arterial blood pressure and reduces adenosine and ATP induced vasodilatation in skeletal muscle in healthy humans
  • 2014
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 211:4, s. 574-584
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: To determine the role played by adenosine, ATP and chemoreflex activation on the regulation of vascular conductance in chronic hypoxia. Methods: The vascular conductance response to low and high doses of adenosine and ATP was assessed in ten healthy men. Vasodilators were infused into the femoral artery at sea level and then after 8-12 days of residence at 4559 m above sea level. At sea level, the infusions were carried out while the subjects breathed room air, acute hypoxia (FIO2 = 0.11) and hyperoxia (FIO2 = 1); and at altitude (FIO2 = 0.21 and 1). Skeletal muscle P2Y2 receptor protein expression was determined in muscle biopsies after 4 weeks at 3454 m by Western blot. Results: At altitude, mean arterial blood pressure was 13% higher (91 ± 2 vs. 102 ± 3 mmHg, P < 0.05) than at sea level and was unaltered by hyperoxic breathing. Baseline leg vascular conductance was 25% lower at altitude than at sea level (P < 0.05). At altitude, the high doses of adenosine and ATP reduced mean arterial blood pressure by 9-12%, independently of FIO2. The change in vascular conductance in response to ATP was lower at altitude than at sea level by 24 and 38%, during the low and high ATP doses respectively (P < 0.05), and by 22% during the infusion with high adenosine doses. Hyperoxic breathing did not modify the response to vasodilators at sea level or at altitude. P2Y2 receptor expression remained unchanged with altitude residence. Conclusions: Short-term residence at altitude increases arterial blood pressure and reduces the vasodilatory responses to adenosine and ATP. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
  •  
23.
  • Calbet, J A L, et al. (författare)
  • Constant infusion transpulmonary thermodilution for the assessment of cardiac output in exercising humans.
  • 2016
  • Ingår i: Scandinavian Journal of Medicine and Science in Sports. - : Wiley. - 0905-7188 .- 1600-0838. ; 26:5, s. 518-527
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine the accuracy and precision of constant infusion transpulmonary thermodilution cardiac output (CITT-Q) assessment during exercise in humans, using indocyanine green (ICG) dilution and bolus transpulmonary thermodilution (BTD) as reference methods, cardiac output (Q) was determined at rest and during incremental one- and two-legged pedaling on a cycle ergometer, and combined arm cranking with leg pedaling to exhaustion in 15 healthy men. Continuous infusions of iced saline in the femoral vein (n = 41) or simultaneously in the femoral and axillary (n = 66) veins with determination of temperature in the femoral artery were used for CITT-Q assessment. CITT-Q was linearly related to ICG-Q (r = 0.82, CITT-Q = 0.876 × ICG-Q + 3.638, P < 0.001; limits of agreement ranging from -1.43 to 3.07 L/min) and BTD-Q (r = 0.91, CITT-Q = 0.822 × BTD + 4.481 L/min, P < 0.001; limits of agreement ranging from -1.01 to 2.63 L/min). Compared with ICG-Q and BTD-Q, CITT-Q overestimated cardiac output by 1.6 L/min (≈ 10% of the mean ICG and BTD-Q values, P < 0.05). For Q between 20 and 28 L/min, we estimated an overestimation < 5%. The coefficient of variation of 23 repeated CITT-Q measurements was 6.0% (CI: 6.1-11.1%). In conclusion, cardiac output can be precisely and accurately determined with constant infusion transpulmonary thermodilution in exercising humans.
  •  
24.
  • Calbet, Jose A. L., et al. (författare)
  • Exercise Preserves Lean Mass and Performance during Severe Energy Deficit : The Role of Exercise Volume and Dietary Protein Content
  • 2017
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The loss of fat-free mass (FFM) caused by very-low-calorie diets (VLCD) can be attenuated by exercise. The aim of this study was to determine the role played by exercise and dietary protein content in preserving the lean mass and performance of exercised and non-exercised muscles, during a short period of extreme energy deficit (similar to 23 MJ deficit/day). Fifteen overweight men underwent three consecutive experimental phases: baseline assessment (PRE), followed by 4 days of caloric restriction and exercise (CRE) and then 3 days on a control diet combined with reduced exercise (CD). During CRE, the participants ingested a VLCD and performed 45 min of one-arm cranking followed by 8 h walking each day. The VLCD consisted of 0.8 g/kg body weight/day of either whey protein (PRO, n = 8) or sucrose (SU, n = 7). FFM was reduced after CRE (P < 0.001), with the legs and the exercised arm losing proportionally less FFM than the control arm [57% (P < 0.05) and 29% (P = 0.05), respectively]. Performance during leg pedaling, as reflected by the peak oxygen uptake and power output (Wpeak), was reduced after CRE by 15 and 12%, respectively (P < 0.05), and recovered only partially after CD. The deterioration of cycling performance was more pronounced in the whey protein than sucrose group (P < 0.05). Wpeak during arm cranking was unchanged in the control arm, but improved in the contralateral arm by arm cranking. There was a linear relationship between the reduction in whole-body FFM between PRE and CRE and the changes in the cortisol/free testosterone ratio (C/FT), serum isoleucine, leucine, tryptophan, valine, BCAA, and EAA (r = -0.54 to -0.71, respectively, P < 0.05). C/FT tended to be higher in the PRO than the SU group following CRE (P = 0.06). In conclusion, concomitant low-intensity exercise such as walking or arm cranking even during an extreme energy deficit results in remarkable preservation of lean mass. The intake of proteins alone may be associated with greater cortisol/free testosterone ratio and is not better than the ingestion of only carbohydrates for preserving FFM and muscle performance in interventions of short duration.
  •  
25.
  • Calbet, Jose A. L., et al. (författare)
  • On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass
  • 2009
  • Ingår i: Journal of Physiology. - : Wiley. - 1469-7793 .- 0022-3751. ; 587:2, s. 477-490
  • Tidskriftsartikel (refereegranskat)abstract
    • Peak aerobic power in humans ((V) over dot(O2), peak) is markedly affected by inspired O-2 tension (F-IO2). The question to be answered in this study is what factor plays a major role in the limitation of muscle peak. (V) over dot(O2) in hypoxia: arterial O-2 partial pressure (P-a,(O2)) or O-2 content (C-a,C-O2)? Thus, cardiac output (dye dilution with Cardio-green), leg blood flow (thermodilution), intra-arterial blood pressure and femoral arterial-to-venous differences in blood gases were determined in nine lowlanders studied during incremental exercise using a large (two-legged cycle ergometer exercise: Bike) and a small (one-legged knee extension exercise: Knee) muscle mass in normoxia, acute hypoxia (AH) (F-IO2 = 0.105) and after 9 weeks of residence at 5260 m (CH). Reducing the size of the active muscle mass blunted by 62% the effect of hypoxia on. (V) over dot(O2,peak) in AH and abolished completely the effect of hypoxia on. (V) over dot(O2,peak) after altitude acclimatization. Acclimatization improved Bike peak exercise Pa, O-2 from 34 +/- 1 in AH to 45 +/- 1 mmHg in CH(P < 0.05) and Knee Pa, O-2 from 38 +/- 1 to 55 +/- 2 mmHg(P < 0.05). Peak cardiac output and leg blood flow were reduced in hypoxia only during Bike. Acute hypoxia resulted in reduction of systemic O-2 delivery (46 and 21%) and leg O-2 delivery (47 and 26%) during Bike and Knee, respectively, almost matching the corresponding reduction in. (V) over dot(O2,peak). Altitude acclimatization restored fully peak systemic and leg O-2 delivery in CH (2.69 +/- 0.27 and 1.28 +/- 0.11 l min(-1), respectively) to sea level values (2.65 +/- 0.15 and 1.16 +/- 0.11 l min(-1), respectively) during Knee, but not during Bike. During Knee in CH, leg oxygen delivery was similar to normoxia and, therefore, also. (V) over dot(O2,peak) in spite of a P-a,P-O2 of 55 mmHg. Reducing the size of the active muscle mass improves pulmonary gas exchange during hypoxic exercise, attenuates the Bohr effect on oxygen uploading at the lungs and preserves sea level convective O-2 transport to the active muscles. Thus, the altitude-acclimatized human has potentially a similar exercising capacity as at sea level when the exercise model allows for an adequate oxygen delivery (blood flow x C-a,C-O2), with only a minor role of P-a,P-O2 per se, when P-a,P-O2 is more than 55 mmHg.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 48
Typ av publikation
tidskriftsartikel (39)
konferensbidrag (8)
bokkapitel (1)
Typ av innehåll
refereegranskat (43)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Calbet, José A L (19)
Holmberg, Hans-Chris ... (15)
Boushel, Robert (15)
Calbet, J A L (13)
Morales-Alamo, David (12)
Holmberg, Hans-Chris ... (11)
visa fler...
Perez-Suarez, I. (7)
Martin-Rincon, Marco ... (7)
Calbet, JAL (6)
Perez-Suarez, Ismael (6)
Morales –Alamo, D (5)
Santana, A (4)
van Hall, G. (4)
Saltin, B (4)
Larsen, Filip J, 197 ... (4)
Santana, Alfredo (4)
Losa-Reyna, José (4)
Rådegran, Göran (3)
Jensen-Urstad, M (3)
Cardinale, Daniele A ... (3)
Saltin, Bengt (3)
Willis, Sarah J. (3)
Ekblom, Björn, 1938- (3)
Calbet, A. (3)
Martin-Rincon, M (3)
Larsen, Filip J (3)
Calbet, Albert (3)
de la Calle Herrero, ... (3)
de la Calle-Herrero, ... (3)
Ponce-González, Jesú ... (3)
Martinez, A (2)
Granéli, Edna (2)
Jakobsson, J. (2)
Ørtenblad, Niels (2)
Blomstrand, Eva (2)
Ara, I (2)
Robach, P. (2)
Lundby, Carsten (2)
Zinner, Christoph (2)
Boushel, R (2)
Gnaiger, E (2)
Helge, J W (2)
González-Alonso, J (2)
Søndergaard, H (2)
Raven, John A. (2)
Negoita, F. (2)
Ponce-Gonzalez, J. G ... (2)
Boushel, Robert C (2)
Ponce-Gonzalez, Jesu ... (2)
Sheel, A William (2)
visa färre...
Lärosäte
Mittuniversitetet (23)
Luleå tekniska universitet (18)
Gymnastik- och idrottshögskolan (16)
Karolinska Institutet (11)
Lunds universitet (6)
Umeå universitet (4)
visa fler...
Linnéuniversitetet (3)
Göteborgs universitet (2)
Linköpings universitet (2)
Sveriges Lantbruksuniversitet (2)
Uppsala universitet (1)
Stockholms universitet (1)
visa färre...
Språk
Engelska (48)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (38)
Naturvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy