SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Caleman C) "

Sökning: WFRF:(Caleman C)

  • Resultat 1-25 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barty, A., et al. (författare)
  • Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements
  • 2012
  • Ingår i: Nature Photonics. - 1749-4885 .- 1749-4893. ; 6:1, s. 35-40
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1, 2, 3, 4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution.
  •  
2.
  • Boutet, S., et al. (författare)
  • High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography
  • 2012
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 337:6092, s. 362-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.
  •  
3.
  • Gaffney, K J, et al. (författare)
  • Observation of structural anisotropy and the onset of liquidlike motion during the nonthermal melting of InSb
  • 2005
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 95:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The melting dynamics of laser excited InSb have been studied with femtosecond x-ray diffraction. These measurements observe the delayed onset of diffusive atomic motion, signaling the appearance of liquidlike dynamics. They also demonstrate that the root-mean-squared displacement in the [111] direction increases faster than in the [110] direction after the first 500 fs. This structural anisotropy indicates that the initially generated fluid differs significantly from the equilibrium liquid.
  •  
4.
  • Galli, L., et al. (författare)
  • Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse
  • 2015
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Current hard X-ray free-electron laser (XFEL) sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed.
  •  
5.
  • Makita, M., et al. (författare)
  • Femtosecond phase-transition in hard x-ray excited bismuth
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of bismuth crystal structure upon excitation of its A(1g) phonon has been intensely studied with short pulse optical lasers. Here we present the first-time observation of a hard x-ray induced ultrafast phase transition in a bismuth single crystal at high intensities (similar to 10(14) W/cm(2)). The lattice evolution was followed using a recently demonstrated x-ray single-shot probing setup. The time evolution of the (111) Bragg peak intensity showed strong dependence on the excitation fluence. After exposure to a sufficiently intense x-ray pulse, the peak intensity dropped to zero within 300 fs, i.e. faster than one oscillation period of the A(1g) mode at room temperature. Our analysis indicates a nonthermal origin of a lattice disordering process, and excludes interpretations based on electron-ion equilibration process, or on thermodynamic heating process leading to plasma formation.
  •  
6.
  • Aquila, Andrew, et al. (författare)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
7.
  • Candanedo, J., et al. (författare)
  • Dynamics of rare gas solids irradiated by electron beams
  • 2020
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 152:14
  • Tidskriftsartikel (refereegranskat)abstract
    • The remarkable success of x-ray free-electron lasers and their ability to image biological macromolecules while outrunning secondary radiation damage due to photoelectrons, by using femtosecond pulses, raise the question of whether this can be done using pulsed high-energy electron beams. In this paper, we use excited state molecular dynamics simulations, with tabulated potentials, for rare gas solids to investigate the effect of radiation damage due to inelastic scattering (by plasmons, excitons, and heat) on the pair distribution function. We use electron energy loss spectra to characterize the electronic excitations responsible for radiation damage.
  •  
8.
  • Cavalieri, A L, et al. (författare)
  • Clocking femtosecond X rays.
  • 2005
  • Ingår i: Phys Rev Lett. - 0031-9007. ; 94:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Linear-accelerator-based sources will revolutionize ultrafast x-ray science due to their unprecedented brightness and short pulse duration. However, time-resolved studies at the resolution of the x-ray pulse duration are hampered by the inability to precisely synchronize an external laser to the accelerator. At the Sub-Picosecond Pulse Source at the Stanford Linear-Accelerator Center we solved this problem by measuring the arrival time of each high energy electron bunch with electro-optic sampling. This measurement indirectly determined the arrival time of each x-ray pulse relative to an external pump laser pulse with a time resolution of better than 60 fs rms.
  •  
9.
  • Chapman, Henry N, et al. (författare)
  • Femtosecond X-ray protein nanocrystallography.
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 470:7332, s. 73-7
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200nm to 2μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
  •  
10.
  • Johansson, Linda C, 1983, et al. (författare)
  • Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography.
  • 2013
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8Å resolution and determine its serial femtosecond crystallography structure to 3.5Å resolution. Although every microcrystal is exposed to a dose of 33MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure.
  •  
11.
  • Koopmann, Rudolf, et al. (författare)
  • In vivo protein crystallization opens new routes in structural biology
  • 2012
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 9:3, s. 259-262
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
  •  
12.
  • Lindenberg, AM, et al. (författare)
  • Atomic-scale visualization of inertial dynamics
  • 2005
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 308:5720, s. 392-395
  • Tidskriftsartikel (refereegranskat)abstract
    • The motion of atoms on interatomic potential energy surfaces is fundamental to the dynamics of liquids and solids. An accelerator-based source of femtosecond x-ray pulses allowed us to follow directly atomic displacements on an optically modified energy landscape, leading eventually to the transition from crystalline solid to disordered liquid. We show that, to first order in time, the dynamics are inertial, and we place constraints on the shape and curvature of the transition-state potential energy surface. Our measurements point toward analogies between this nonequilibrium phase transition and the short-time dynamics intrinsic to equilibrium liquids.
  •  
13.
  • Lomb, Lukas, et al. (författare)
  • Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser
  • 2011
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 84:21, s. 214111-1-214111-6
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.
  •  
14.
  • Redecke, Lars, et al. (författare)
  • Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser.
  • 2013
  • Ingår i: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 339:6116, s. 227-30
  • Tidskriftsartikel (refereegranskat)abstract
    • The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the "diffraction-before-destruction" approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.
  •  
15.
  • Seibert, M. Marvin, et al. (författare)
  • Single mimivirus particles intercepted and imaged with an X-ray laser
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 470:7332, s. 78-81
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions(1-4). Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma(1). The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval(2). Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a noncrystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source(5). Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
  •  
16.
  • Caleman, Carl, et al. (författare)
  • Nanocrystal imaging using intense and ultrashort X-ray pulses
  • Annan publikation (populärvet., debatt m.m.)abstract
    • Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest in the crystal. X-ray lasers offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses. Such pulses may allow the imaging of single molecules, clusters or nanoparticles, but coherent flash imaging will also open up new avenues for structural studies on nano- and micro-crystalline substances. This paper addresses the potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances, and simulate the primary and secondary ionization dynamics in the crystalline sample. The results establish conditions for diffraction experiments as a function of X-ray fluence, pulse duration, and the size of nanocrystals.
  •  
17.
  • Caleman, Carl, et al. (författare)
  • On the Feasibility of Nanocrystal Imaging Using Intense and Ultrashort X-ray Pulses
  • 2011
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 5:1, s. 139-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest in the crystal. X-ray lasers offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses Such pulses may allow the imaging of single molecules, clusters; Or nanoparticles: Coherent flash Imaging Will also open up new avenues for structural studies on nano- and microcrystalline substances. This paper addresses the theoretical potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances and simulate the primary and secondary ionization dynamics in the crystalline sample. The results establish conditions for ultrafast single shot nanocrystallography diffraction experiments as a function of X-ray fluence, pulse duration, and the size of nanocrystals. Nanocrystallography using ultrafast X-ray pulses has the potential to open up a new route in protein crystallography to solve atomic structures of many systems that remain Inaccessible using conventional X-ray sources.
  •  
18.
  • Caleman, Carl, et al. (författare)
  • Simulations of radiation damage in biomolecular nanocrystals induced by femtosecond X-ray pulses
  • 2011
  • Ingår i: Journal of Modern Optics. - : Informa UK Limited. - 0950-0340 .- 1362-3044. ; 58:16, s. 1486-1497
  • Tidskriftsartikel (refereegranskat)abstract
    • The Linac Coherent Light Source (LCLS) is the first X-ray free electron laser to achieve lasing at subnanometer wavelengths (6 angstrom). LCLS is poised to reach even shorter wavelengths (1.5 angstrom) and thus holds the promise of single molecular imaging at atomic resolution. The initial operation at a photon energy of 2 keV provides the possibility to perform the first experiments on damage to biological particles, and to assess the limitations to coherent imaging of biological samples, which are directly relevant at atomic resolution. In this paper we theoretically investigate the damage formation and detection possibilities for a biological crystal, by employing and comparing two different damage models with complementary strengths. Molecular dynamics provides a discrete approach which investigates structural details at the atomic level by tracking all atoms in the real space. Our continuum model is based on a non-local thermodynamics equilibrium code with atomic kinetics and radiation transfer and can treat hydrodynamic expansion of the entire system. The latter approach captures the essential features of atomic displacements, without taking into account structural information and intrinsic atomic movements. This proves to be a powerful computational tool for many samples, including biological crystals, which will be studied with X-ray free electron lasers.
  •  
19.
  •  
20.
  • Gopakumar, Geethanjali, 1992-, et al. (författare)
  • X-ray Induced Fragmentation of Protonated Cystine
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Protein structure determination using high-intensity X-ray sources induces damage in the protein. Disulfide bridges, formed between two cysteine amino acid residues stabilize the protein structure. Owing to the higher absorption cross-section of sulfur for X-ray photons, and a large number of electrons released from sulfur atoms, these disulfide bridges are hot spots for a higher level of noise in structural studies. But it is yet to be understood how exactly the damage occurs through the interaction of the disulfide bridges with photons. Here we study the fragmentation of protonated cystine in the gas phase, which is the dimer of cysteine, by irradiation with X-rays across the sulfur L-edge using an electrospray ionization source (ESI) in combination with an ion trap. This is complemented with the calculation of the sulfur NEXAFS spectrum on the level of Restricted Open-Shell Configuration Interaction (ROCIS) and Density Functional Theory (DFT) calculations for molecular orbital visualization as well as Molecular Dynamics (MD) simulations for the fragmentation of triply charged cystine ions. We have deduced a possible pathway of fragmentation upon excitation and ionization of S 2p electrons by combining the experiments and simulations. The disulfide bridge breaks for resonant excitation at lower energies but remains intact upon higher energy resonant excitation and upon ionization of S 2p. The larger fragments formed subsequently break into smaller fragments. 
  •  
21.
  • Harbst, Michael, et al. (författare)
  • Studies of resolidification of non-thermally molten InSb using time-resolved X-ray diffraction
  • 2005
  • Ingår i: APPLIED PHYSICS A: MATERIALS SCIENCE & PROCESSING. - : Springer Science and Business Media LLC. - 0947-8396 .- 1432-0630. ; 81:5, s. 893-900
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used time-resolved X-ray diffraction to monitor the resolidification process of molten InSb. Melting was induced by an ultra-short laser pulse and the measurement conducted in a high-repetition-rate multishot experiment. The method gives direct information about the nature of the transient regrowth and permanently damaged layers. It does not rely on models based on surface reflectivity or second harmonic generation (SHG). The measured resolidification process has been modeled with a 1-D thermodynamic heat-conduction model. Important parameters like sample temperature, melting depth and amorphous surface layer thickness come directly out of the data, while mosaicity of the sample and free carrier density can be quantified by comparing with models. Melt depths up to 80 nm have been observed and regrowth velocities in the range 2-8 m/s have been measured.
  •  
22.
  • Hau-Riege, S. P., et al. (författare)
  • Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation
  • 2009
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 95:11, s. 111104-111104-3
  • Tidskriftsartikel (refereegranskat)abstract
    • We exposed bulk SiC and films of SiC and B4C to single 25 fs long free-electron-laser pulses with wavelengths between 13.5 and 32 nm. The materials are candidates for x-ray free-electron laser optics. We found that the threshold for surface-damage of the bulk SiC samples exceeds the fluence required for thermal melting at all wavelengths. The damage threshold of the film sample shows a strong wavelength dependence. For wavelengths of 13.5 and 21.7 nm, the damage threshold is equal to or exceeds the melting threshold, whereas at 32 nm the damage threshold falls below the melting threshold.
  •  
23.
  • Jonsson, H. O., et al. (författare)
  • Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission
  • 2017
  • Ingår i: IUCrJ. - : International Union of Crystallography (IUCr). - 2052-2525. ; 4, s. 778-784
  • Tidskriftsartikel (refereegranskat)abstract
    • Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000 pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.
  •  
24.
  • Kuepper, Jochen, et al. (författare)
  • X-Ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser
  • 2014
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 112:8, s. 083002-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e.g., structural-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules.
  •  
25.
  • Kupitz, Christopher, et al. (författare)
  • Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 513:7517, s. 261-265
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 29
Typ av publikation
tidskriftsartikel (23)
annan publikation (4)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (25)
övrigt vetenskapligt/konstnärligt (3)
populärvet., debatt m.m. (1)
Författare/redaktör
Caleman, Carl (20)
Timneanu, Nicusor (13)
Seibert, M Marvin (12)
Chapman, Henry N. (12)
Barty, Anton (10)
Bogan, Michael J. (9)
visa fler...
Maia, Filipe R. N. C ... (9)
White, Thomas A. (9)
Aquila, Andrew (8)
Shoeman, Robert L (8)
Doak, R Bruce (8)
Martin, Andrew V. (8)
Fromme, Petra (8)
Bajt, Saša (8)
Liang, Mengning (8)
Lomb, Lukas (8)
Hajdu, Janos (7)
Boutet, Sébastien (7)
Hunter, Mark S. (7)
Kirian, Richard A. (7)
DePonte, Daniel P. (7)
Frank, Matthias (7)
Erk, Benjamin (6)
Rudenko, Artem (6)
Rolles, Daniel (6)
Williams, Garth J. (6)
Andreasson, Jakob (6)
Foucar, Lutz (6)
Hartmann, Robert (6)
Rudek, Benedikt (6)
Bostedt, Christoph (6)
Coppola, Nicola (6)
Gumprecht, Lars (6)
Holl, Peter (6)
Kimmel, Nils (6)
Kassemeyer, Stephan (6)
Marchesini, Stefano (6)
Graafsma, Heinz (5)
Hirsemann, Helmut (5)
Grotjohann, Ingo (5)
Neutze, Richard, 196 ... (5)
Ekeberg, Tomas (5)
Chapman, H. N. (5)
Arnlund, David (5)
Barthelmess, Miriam (5)
Bozek, John D. (5)
Epp, Sascha W. (5)
Fleckenstein, Holger (5)
Fromme, Raimund (5)
Hampton, Christina Y ... (5)
visa färre...
Lärosäte
Uppsala universitet (28)
Göteborgs universitet (6)
Lunds universitet (5)
Malmö universitet (3)
Sveriges Lantbruksuniversitet (3)
Kungliga Tekniska Högskolan (1)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (29)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (25)
Medicin och hälsovetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy