SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Caleman Carl) "

Sökning: WFRF:(Caleman Carl)

  • Resultat 1-25 av 124
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akiyama, Tomoko, et al. (författare)
  • Influence of Ionization on the Dynamics of Hydrocarbons
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The structural changes of four hydrocarbons induced by ionization was investigated using molecular dynamics simulations based on density functional theory within the Born-Oppenheimer approximation. Bond lengths, bond breaking and proton rearrangement was analysed for propane, propene, propyne and propadiene at charges ranging from 0 to +3.   Similar to the case of amino acids, the back-bone of linear hydrocarbons is stabilized by reducing theeffectiv elevel of ionization through dropping protons. Subsequent iniozations, up the the level of 3+, do not break thelinear carbon chain within 250 fs, however the bond-orderis reduced, and bond-distances approach that of a single-bond
  •  
2.
  • Akiyama, Tomoko (författare)
  • Ionization Influence on the Dynamics of Simple Organic Molecules
  • 2023
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This licentiate thesis is devoted to the investigation of how bonding in simple organic molecules are affected by X-ray beam irradiation. The investigation targets molecules with three carbons as their main-chain structure. The stability of the bonds under ionization are simulated using the SIESTA package. SIESTA is a simulation package that provides molecular dynamics simulations based on density functional theory within the Born-Oppenheimer approximation. The aim of this study is to understand statistically the damaging process and selectivity among different types of bond. As the first targets, 4 hydrocarbons are investigated. They are propane, propene, propyne and propadiene, which have different combinations of single, double and triple bonds as their main-chain structures. Depending on the combinations, the structures can be either symmetric around the central atom or not. The structure of the symmetric molecules propane and propadiene are  stable until charge +3. In contrast, the asymmetric molecules propene and propyne, the  main-chain bonds show a tendency towards a more similar bond-distance as the level of ionization increases. In addition, hydrogens relocation occurs in propene, leading to a symmetric structure. Secondly, the bond fluctuations are investigated among 4 types of three-carbon molecules which have functional parts. Alcohol and carboxyl groups molecules show the stable bond integrities at charging 0 to +2. On the other hand, the carbon-carbon bonds in molecules with  acetyl and ketone groups are broken by ionization. Comparing the 8 kinds of bond breaking processes in these molecules, this statistical study gives an insight to organic molecules bonding systems.
  •  
3.
  • André, Tomas, et al. (författare)
  • Macromolecule classification using X-ray laser induced fragmentation simulated with hybrid Monte Carlo/Molecular Dynamics
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We have developed a hybrid Monte Carlo and classical molecular dynamics code to follow the ultrafast atomic dynamics in biological macromolecules induced by a femtosecond X-ray laser. Our model for fragmentation shows good qualitative agreement with ab-initio simulations of small molecules, while being computationally faster.  We applied the code for macromolecules and simulated the Coulomb explosion dynamics due to the fast ionization in six proteins with different physical properties. The trajectories of the ions are followed and projected onto a detector, where the particular pattern depends on the protein, providing a unique footprint. We utilize algorithms such as principal component analysis  and t-distributed stochastic neighbor embedding to classify the fragmentation pattern. The results show that the classification algorithms are able to separate the explosion patterns into distinct groups. We envision that this method could be used to provide additional class information, like particle mass or shape, in structural determination experiments using X-ray lasers.
  •  
4.
  • Andreasson, Jakob, et al. (författare)
  • Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-x-ray laser
  • 2011
  • Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. - 1539-3755 .- 1550-2376. ; 83:1, s. 016403-
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of materials under extreme conditions have relevance to a broad area of research, including planetary physics, fusion research, materials science, and structural biology with x-ray lasers. We study such extreme conditions and experimentally probe the interaction between ultrashort soft x-ray pulses and solid targets (metals and their deuterides) at the FLASH free-electron laser where power densities exceeding 1017 W/cm2 were reached. Time-of-flight ion spectrometry and crater analysis were used to characterize the interaction. The results show the onset of saturation in the ablation process at power densities above 1016 W/cm2. This effect can be linked to a transiently induced x-ray transparency in the solid by the femtosecond x-ray pulse at high power densities. The measured kinetic energies of protons and deuterons ejected from the surface reach several keV and concur with predictions from plasma-expansion models. Simulations of the interactions were performed with a nonlocal thermodynamic equilibrium code with radiation transfer. These calculations return critical depths similar to the observed crater depths and capture the transient surface transparency at higher power densities.
  •  
5.
  • Aquila, Andrew, et al. (författare)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
6.
  • Barty, A., et al. (författare)
  • Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements
  • 2012
  • Ingår i: Nature Photonics. - 1749-4885 .- 1749-4893. ; 6:1, s. 35-40
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1, 2, 3, 4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution.
  •  
7.
  • Bergh, Magnus, et al. (författare)
  • A Validation Study of the General Amber Force Field Applied to Energetic Molecular Crystals
  • 2016
  • Ingår i: Journal of Energetic Materials. - : Informa UK Limited. - 0737-0652 .- 1545-8822. ; 34:1, s. 62-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecula dynamics is a well-established tool to computationally study molecules. However, to reach predictive capability at the level required for applied research and design, extensive validation of the available force fields is pertinent. Here we present a study of density, isothermal compressibility and coefficients of thermal expansion of four energetic materials (FOX-7, RDX, CL-20 and HMX) based on molecular dynamics simulations with the General Amber Force Field (GAFF), and compare the results to experimental measurements from the literature. Furthermore, we quantify the accuracy of the calculated properties through hydrocode simulation of a typical impact scenario. We find that molecular dynamics simulations with generic and computationally efficient force fields may be used to understand and estimate important physical properties of nitramine-like energetic materials.
  •  
8.
  • Beyerlein, Kenneth, et al. (författare)
  • Ultrafast non-thermal heating of water initiated by an X-ray laser
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:22, s. 5652-5657
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray Free-Electron Lasers have opened the door to a new era in structural biology, enabling imaging of biomolecules and dynamics that were impossible to access with conventional methods. A vast majority of imaging experiments, including Serial Femtosecond Crystallography, use a liquid jet to deliver the sample into the interaction region. We have observed structural changes in the carrying water during X-ray exposure, showing how it transforms from the liquid phase to a plasma. This ultrafast phase transition observed in water provides evidence that any biological structure exposed to these X-ray pulses is destroyed during the X-ray exposure.The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 106 J/cm2. These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.
  •  
9.
  • Boutet, S., et al. (författare)
  • High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography
  • 2012
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 337:6092, s. 362-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.
  •  
10.
  • Brodmerkel, Maxim N., et al. (författare)
  • Collision induced unfolding and molecular dynamics simulations of norovirus capsid dimers reveal strain-specific stability profiles
  • 2024
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084.
  • Tidskriftsartikel (refereegranskat)abstract
    • Collision induced unfolding is method used with ion mobility mass spectrometry to examine protein structures and their stability. Such experiments yield information about higher order protein structures, yet are unable to provide details about the underlying processes. That information can however be provided using molecular dynamics simulations. Here, we investigate the collision induced unfolding of norovirus capsid dimers from the Norwalk and Kawasaki strains by employing molecular dynamics simulations over a range of temperatures, representing different levels of activation. The dimers have highly similar structures, but the activation reveals differences in the dynamics that arises in response to the activation.
  •  
11.
  • Brodmerkel, Maxim N., et al. (författare)
  • Rehydration Post-orientation : Investigating Field-Induced Structural Changes via Computational Rehydration
  • 2023
  • Ingår i: The Protein Journal. - : Springer Nature. - 1572-3887 .- 1875-8355. ; 42:3, s. 205-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins can be oriented in the gas phase using strong electric fields, which brings advantages for structure determination using X-ray free electron lasers. Both the vacuum conditions and the electric-field exposure risk damaging the protein structures. Here, we employ molecular dynamics simulations to rehydrate and relax vacuum and electric-field exposed proteins in aqueous solution, which simulates a refinement of structure models derived from oriented gas-phase proteins. We find that the impact of the strong electric fields on the protein structures is of minor importance after rehydration, compared to that of vacuum exposure and ionization in electrospraying. The structures did not fully relax back to their native structure in solution on the simulated timescales of 200 ns, but they recover several features, including native-like intra-protein contacts, which suggests that the structures remain in a state from which the fully native structure is accessible. Our fndings imply that the electric fields used in native mass spectrometry are well below a destructive level, and suggest that structures inferred from X-ray difraction from gas-phase proteins are relevant for solution and in vivo conditions, at least after in silico rehydration.
  •  
12.
  • Brodmerkel, Maxim N., et al. (författare)
  • Stability and conformational memory of electrosprayed and rehydrated bacteriophage MS2 virus coat proteins
  • 2022
  • Ingår i: Current Research in Structural Biology. - : Elsevier. - 2665-928X. ; 4, s. 338-348
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins are innately dynamic, which is important for their functions, but which also poses significant challenges when studying their structures. Gas-phase techniques can utilise separation and a range of sample manipulations to transcend some of the limitations of conventional techniques for structural biology in crystalline or solution phase, and isolate different states for separate interrogation. However, the transfer from solution to the gas phase risks affecting the structures, and it is unclear to what extent different conformations remain distinct in the gas phase, and if resolution in silico can recover the native conformations and their differences. Here, we use extensive molecular dynamics simulations to study the two distinct conformations of dimeric capsid protein of the MS2 bacteriophage. The protein undergoes notable restructuring of its peripheral parts in the gas phase, but subsequent simulation in solvent largely recovers the native structure. Our results suggest that despite some structural loss due to the experimental conditions, gas-phase structural biology techniques provide meaningful data that inform not only about the structures but also conformational dynamics of proteins.
  •  
13.
  • Brodmerkel, Maxim N. (författare)
  • Theoretical and Biochemical : Advancing Protein Structure Investigations with Complementing Computations
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Life as we know it today would not exist without proteins. The functions of proteins for us and other organisms are linked to their three-dimensional structures. As such, protein structure investigations are a crucial contribution for understanding proteins and the molecular basis of life. Some methods probe the structure of proteins in the gas phase, which brings various advantages as well as complications. Amongst them is mass spectrometry, a powerful method that provides a multitude of information on gaseous protein structures. Whilst mass spectrometry shines in obtaining data of the higher-order structures, atomistic details are out of reach. Molecular dynamics simulations on the other hand allow the interrogation of proteins in high-resolution, which makes it an ideal method for their structural research, be it in or out of solution.This thesis aims to advance the understanding of protein structures and the methods for their study utilising classic molecular dynamics simulations. The research presented in this thesis can be divided into two themes, comprising the rehydration of vacuum-exposed structures and the interrogation of the induced unfolding process of proteins. Out of their native environment, proteins undergo structural changes when exposed to vacuum. Investigating the ability to revert those potential vacuum-induced structural changes by means of computational rehydration provided detailed information on the underlying protein dynamics and how much of the structure revert back to their solution norm. We have further shown through rehydration simulations that applying an external electric field for dipole-orientation purposes does not induce irreversible changes to the protein structures. Our investigations on the induced unfolding of protein structures allowed a detailed look into the process of unfolding, accurately pinpointing areas within the proteins that unfolded first. The details provided by our simulations enabled us to describe potential mechanisms of the unfolding processes of different proteins on an atomistic level. The obtained results thus provide a potent theoretical basis for current and future experiments, where it will be very interesting to see MD compared with or complemented to experiments.
  •  
14.
  • Caleman, Carl, et al. (författare)
  • A Perspective on Molecular Structure and Bond-Breaking in Radiation Damage in Serial Femtosecond Crystallography
  • 2020
  • Ingår i: Crystals. - : MDPI. - 2073-4352. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers (XFELs) have a unique capability for time-resolved studies of protein dynamics and conformational changes on femto- and pico-second time scales. The extreme intensity of X-ray pulses can potentially cause significant modifications to the sample structure during exposure. Successful time-resolved XFEL crystallography depends on the unambiguous interpretation of the protein dynamics of interest from the effects of radiation damage. Proteins containing relatively heavy elements, such as sulfur or metals, have a higher risk for radiation damage. In metaloenzymes, for example, the dynamics of interest usually occur at the metal centers, which are also hotspots for damage due to the higher atomic number of the elements they contain. An ongoing challenge with such local damage is to understand the residual bonding in these locally ionized systems and bond-breaking dynamics. Here, we present a perspective on radiation damage in XFEL experiments with a particular focus on the impacts for time-resolved protein crystallography. We discuss recent experimental and modelling results of bond-breaking and ion motion at disulfide bonding sites in protein crystals.
  •  
15.
  • Caleman, Carl, et al. (författare)
  • Atomistic simulation of ion solvation in water explains surface preference of halides
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:17, s. 6838-6842
  • Tidskriftsartikel (refereegranskat)abstract
    • Water is a demanding partner. It strongly attracts ions, yet some halide anions-chloride, bromide, and iodide-are expelled to the air/water interface. This has important implications for chemistry in the atmosphere, including the ozone cycle. We present a quantitative analysis of the energetics of ion solvation based on molecular simulations of all stable alkali and halide ions in water droplets. The potentials of mean force for Cl-, Br-, and I-have shallow minima near the surface. We demonstrate that these minima derive from more favorable water-water interaction energy when the ions are partially desolvated. Alkali cations are on the inside because of the favorable ion-water energy, whereas F-is driven inside by entropy. Models attempting to explain the surface preference based on one or more ion properties such as polarizability or size are shown to lead to qualitative and quantitative errors, prompting a paradigm shift in chemistry away from such simplifications.
  •  
16.
  • Caleman, Carl, et al. (författare)
  • Evaporation from water clusters containing singly charged ions
  • 2007
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 9:37, s. 5105-5111
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular dynamics simulations were used to study the evaporation from water clusterscontaining either ClÀ, H2PO4À, Na+ or NH4+ ions. The simulations ranged between 10 and500 ns, and were performed in vacuum starting at 275 K. A number of different models were usedincluding polarizable models. The clusters contain 216 or 512 molecules, 0, 4 or 8 of which wereions. The ions with hydrogen bonding properties do not affect evaporation, even though thephosphate ions have a pronounced ion–ion structure and tend to be inside the cluster whereasammonium shows little ion–ion structure and has a distribution within the cluster similar to thatof the water molecules. Since the individual ion–water interactions are much stronger in the caseof Na+–water and ClÀ–water clusters, evaporation is somewhat slower for clusters containingthese ions. It seems therefore that the main determinant of the evaporation rate in ion–waterclusters is the strength of the interaction. Fission of droplets that contain more ions than allowedaccording to the Rayleigh limit seems to occur more rapidly in clusters containing ammoniumand sodium ions.
  •  
17.
  • Caleman, Carl, et al. (författare)
  • Force Field Benchmark of Organic Liquids : Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant
  • 2012
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 8:1, s. 61-74
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys. 2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed expose of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats, treatment of electrostatic interactions, and system size (1000 molecules). The densities and enthalpy of vaporization from an independent data set based on simulations using the CHARMM General Force Field (CGenFF) presented by Vanommeslaeghe et al. (J. Comput. Chem. 2010, 31, 671) are included for comparison. We find that, overall, the OPLS/AA force field performs somewhat better than GAFF, but there are significant issues with reproduction of the surface tension and dielectric constants for both force fields.
  •  
18.
  • Caleman, Carl, et al. (författare)
  • Modeling of XFEL induced ionization and atomic displacement in protein nanocrystals
  • 2012
  • Ingår i: Proceedings of SPIE. - : SPIE. - 9780819492210 ; , s. 85040H-
  • Konferensbidrag (refereegranskat)abstract
    • X-ray free-electron lasers enable high-resolution imaging of biological materials by using short enough pulses to outrun many of the effects of radiation damage. Experiments conducted at the LCLS have obtained diffraction data from single particles and protein nanocrystals at doses to the sample over 3 GGy. The details of the interaction of the X-ray FEL pulse with the sample determine the limits of this new paradigm for imaging. Recent studies suggest that in the case of crystalline samples, such as protein nanocrystals, the atomic displacements and loss of bound electrons in the crystal (due to the high X- ray intensity) has the effect of gating the diffraction signal, and hence making the experiment less radiation sensitive. Only the incident photon intensity in the first part of the pulse, before the Bragg diffraction has died out, is relevant to acquiring signal and the rest of the pulse will mainly contribute to a diffuse background. In this work we use a plasma based non-local thermodynamic equilibrium code to explore the displacement and the ionization of a protein nanocrystal at various X-ray wavelengths and intensities.
  •  
19.
  • Caleman, Carl, et al. (författare)
  • Nanocrystal imaging using intense and ultrashort X-ray pulses
  • Annan publikation (populärvet., debatt m.m.)abstract
    • Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest in the crystal. X-ray lasers offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses. Such pulses may allow the imaging of single molecules, clusters or nanoparticles, but coherent flash imaging will also open up new avenues for structural studies on nano- and micro-crystalline substances. This paper addresses the potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances, and simulate the primary and secondary ionization dynamics in the crystalline sample. The results establish conditions for diffraction experiments as a function of X-ray fluence, pulse duration, and the size of nanocrystals.
  •  
20.
  • Caleman, Carl, et al. (författare)
  • On the Feasibility of Nanocrystal Imaging Using Intense and Ultrashort X-ray Pulses
  • 2011
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 5:1, s. 139-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest in the crystal. X-ray lasers offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses Such pulses may allow the imaging of single molecules, clusters; Or nanoparticles: Coherent flash Imaging Will also open up new avenues for structural studies on nano- and microcrystalline substances. This paper addresses the theoretical potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances and simulate the primary and secondary ionization dynamics in the crystalline sample. The results establish conditions for ultrafast single shot nanocrystallography diffraction experiments as a function of X-ray fluence, pulse duration, and the size of nanocrystals. Nanocrystallography using ultrafast X-ray pulses has the potential to open up a new route in protein crystallography to solve atomic structures of many systems that remain Inaccessible using conventional X-ray sources.
  •  
21.
  • Caleman, Carl, et al. (författare)
  • Picosecond Melting of Ice by an Infrared Laser Pulse
  • 2008
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 47:8, s. 1417-1420
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold as ice: Molecular dynamics simulation provides snapshots of a melting ice crystal (see picture). The laser pulse heats up the system, and the energy is absorbed in the OH bonds. After a few picoseconds, the energy is transferred to rotational and translational energy, causing the crystal to melt. The melting starts as a nucleation process, and even long after the first melting is initialized, pockets of crystalline structures can be found.
  •  
22.
  • Caleman, Carl, et al. (författare)
  • Radiation damage in biological material : electronic properties and electron impact ionization in urea
  • 2009
  • Ingår i: Europhysics letters. - : IOP. - 0295-5075 .- 1286-4854. ; 85:1, s. 18005-
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiation damage is an unavoidable process when performing structural investigations of biological macromolecules with X-rays. In crystallography this process can be limited through damage distribution in a crystal, while for single molecular imaging it can be outrun by employing short intense pulses. Secondary electron generation is crucial during damage formation and we present a study of urea, as model for biomaterial. From first principles we calculate the band structure and energy loss function, and subsequently the inelastic electron cross-section in urea. Using Molecular Dynamics simulations, we quantify the damage and study the magnitude and spatial extent of the electron cloud coming from an incident electron, as well as the dependence with initial energy.
  •  
23.
  • Caleman, Carl, et al. (författare)
  • Simulations of radiation damage in biomolecular nanocrystals induced by femtosecond X-ray pulses
  • 2011
  • Ingår i: Journal of Modern Optics. - : Informa UK Limited. - 0950-0340 .- 1362-3044. ; 58:16, s. 1486-1497
  • Tidskriftsartikel (refereegranskat)abstract
    • The Linac Coherent Light Source (LCLS) is the first X-ray free electron laser to achieve lasing at subnanometer wavelengths (6 angstrom). LCLS is poised to reach even shorter wavelengths (1.5 angstrom) and thus holds the promise of single molecular imaging at atomic resolution. The initial operation at a photon energy of 2 keV provides the possibility to perform the first experiments on damage to biological particles, and to assess the limitations to coherent imaging of biological samples, which are directly relevant at atomic resolution. In this paper we theoretically investigate the damage formation and detection possibilities for a biological crystal, by employing and comparing two different damage models with complementary strengths. Molecular dynamics provides a discrete approach which investigates structural details at the atomic level by tracking all atoms in the real space. Our continuum model is based on a non-local thermodynamics equilibrium code with atomic kinetics and radiation transfer and can treat hydrodynamic expansion of the entire system. The latter approach captures the essential features of atomic displacements, without taking into account structural information and intrinsic atomic movements. This proves to be a powerful computational tool for many samples, including biological crystals, which will be studied with X-ray free electron lasers.
  •  
24.
  • Caleman, Carl, et al. (författare)
  • Temperature and structural changes of water clusters in vacuum due to evaporation
  • 2006
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 125:15, s. 154508-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a study on evaporation of pure water clusters. Molecular dynamics simulations between 20 ns and 3 mu s of clusters ranging from 125 to 4096 molecules in vacuum were performed. Three different models (SPC, TIP4P, and TIP5P) were used to simulate water, starting at temperatures of 250, 275, and 300 K. We monitored the temperature, the number of hydrogen bonds, the tetrahedral order, the evaporation, the radial distribution functions, and the diffusion coefficients. The three models behave very similarly as far as temperature and evaporation are concerned. Clusters starting at a higher temperature show a higher initial evaporation rate and therefore reach the point where evaporation stop (around 240 K) sooner. The radius of the clusters is decreased by 0.16-0.22 nm after 0.5 mu s (larger clusters tend to decrease their radius slightly more), which corresponds to around one evaporated molecule per nm(2). The cluster temperature seems to converge towards 215 K independent of cluster size, when starting at 275 K. We observe only small structural changes, but the clusters modeled by TIP5P show a larger percentage of molecules with low diffusion coefficient as t ->infinity, than those using the two other water models. TIP4P seems to be more structured and more hydrogen bonds are formed than in the other models as the temperature falls. The cooling rates are in good agreement with experimental results, and evaporation rates agree well with a phenomenological expression based on experimental observations.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 124
Typ av publikation
tidskriftsartikel (92)
annan publikation (13)
doktorsavhandling (8)
konferensbidrag (5)
licentiatavhandling (5)
forskningsöversikt (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (98)
övrigt vetenskapligt/konstnärligt (25)
populärvet., debatt m.m. (1)
Författare/redaktör
Caleman, Carl (117)
Timneanu, Nicusor (47)
Björneholm, Olle (27)
Chapman, Henry N. (22)
Martin, Andrew V. (18)
Unger, Isaak (17)
visa fler...
Hajdu, Janos (16)
Barty, Anton (16)
van Der Spoel, David (15)
Grånäs, Oscar, 1979- (14)
Boutet, Sébastien (14)
Saak, Clara-Magdalen ... (13)
Seibert, M Marvin (13)
Bajt, Saša (13)
Aquila, Andrew (11)
Bogan, Michael J. (11)
White, Thomas A. (11)
Shoeman, Robert L (10)
Doak, R Bruce (10)
Andreasson, Jakob (9)
Maia, Filipe R. N. C ... (9)
Frank, Matthias (9)
Williams, Garth J. (8)
Kirian, Richard A. (8)
Fromme, Petra (8)
Bostedt, Christoph (8)
Liang, Mengning (8)
Lomb, Lukas (8)
Marchesini, Stefano (8)
Marklund, Erik, Tekn ... (7)
Cardoch, Sebastian (7)
Foucar, Lutz (7)
Chapman, H. N. (7)
Hunter, Mark S. (7)
DePonte, Daniel P. (7)
Kassemeyer, Stephan (7)
Öhrwall, Gunnar (6)
Erk, Benjamin (6)
Rudenko, Artem (6)
Rolles, Daniel (6)
Ekeberg, Tomas (6)
Hartmann, Robert (6)
Rudek, Benedikt (6)
Barends, Thomas R. M ... (6)
Barthelmess, Miriam (6)
Coppola, Nicola (6)
Fleckenstein, Holger (6)
Gumprecht, Lars (6)
Holl, Peter (6)
Kimmel, Nils (6)
visa färre...
Lärosäte
Uppsala universitet (122)
Lunds universitet (10)
Göteborgs universitet (6)
Kungliga Tekniska Högskolan (5)
Sveriges Lantbruksuniversitet (5)
Språk
Engelska (122)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (107)
Medicin och hälsovetenskap (3)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy