SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Canton Sophie E.) "

Sökning: WFRF:(Canton Sophie E.)

  • Resultat 1-25 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kjær, Kasper S., et al. (författare)
  • Finding intersections between electronic excited state potential energy surfaces with simultaneous ultrafast X-ray scattering and spectroscopy
  • 2019
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 10:22, s. 5749-5760
  • Tidskriftsartikel (refereegranskat)abstract
    • Light-driven molecular reactions are dictated by the excited state potential energy landscape, depending critically on the location of conical intersections and intersystem crossing points between potential surfaces where non-adiabatic effects govern transition probabilities between distinct electronic states. While ultrafast studies have provided significant insight into electronic excited state reaction dynamics, experimental approaches for identifying and characterizing intersections and seams between electronic states remain highly system dependent. Here we show that for 3d transition metal systems simultaneously recorded X-ray diffuse scattering and X-ray emission spectroscopy at sub-70 femtosecond time-resolution provide a solid experimental foundation for determining the mechanistic details of excited state reactions. In modeling the mechanistic information retrieved from such experiments, it becomes possible to identify the dominant trajectory followed during the excited state cascade and to determine the relevant loci of intersections between states. We illustrate our approach by explicitly mapping parts of the potential energy landscape dictating the light driven low-to-high spin-state transition (spin crossover) of [Fe(2,2′-bipyridine)3]2+, where the strongly coupled nuclear and electronic dynamics have been a source of interest and controversy. We anticipate that simultaneous X-ray diffuse scattering and X-ray emission spectroscopy will provide a valuable approach for mapping the reactive trajectories of light-triggered molecular systems involving 3d transition metals.
  •  
2.
  • Kjær, Kasper S., et al. (författare)
  • Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2′-bipyridine)(CN)4]2-
  • 2018
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 20:6, s. 4238-4249
  • Tidskriftsartikel (refereegranskat)abstract
    • The excited state dynamics of solvated [Fe(bpy)(CN)4]2-, where bpy = 2,2′-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer (MLCT) excited state of [Fe(bpy)(CN)4]2- has a 19 picosecond lifetime and no discernable contribution from metal centered (MC) states in weak Lewis acid solvents, such as dimethyl sulfoxide and acetonitrile.1,2 In the present work, we use the same combination of spectroscopic techniques to measure the MLCT excited state relaxation dynamics of [Fe(bpy)(CN)4]2- in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state has triplet (3MC) character, unlike other reported six-coordinate Fe(ii)-centered coordination compounds, which form MC quintet (5MC) states. The solvent dependent changes in excited state non-radiative relaxation for [Fe(bpy)(CN)4]2- allows us to infer the influence of the solvent on the electronic structure of the complex. Furthermore, the robust characterization of the dynamics and optical spectral signatures of the isolated 3MC intermediate provides a strong foundation for identifying 3MC intermediates in the electronic excited state relaxation mechanisms of similar Fe-centered systems being developed for solar applications.
  •  
3.
  • Kunnus, Kristjan, et al. (författare)
  • Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The non-equilibrium dynamics of electrons and nuclei govern the function of photoactive materials. Disentangling these dynamics remains a critical goal for understanding photoactive materials. Here we investigate the photoinduced dynamics of the [Fe(bmip)2]2+ photosensitizer, where bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, with simultaneous femtosecond-resolution Fe Kα and Kβ X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS). This measurement shows temporal oscillations in the XES and XSS difference signals with the same 278 fs period oscillation. These oscillations originate from an Fe-ligand stretching vibrational wavepacket on a triplet metal-centered (3MC) excited state surface. This 3MC state is populated with a 110 fs time constant by 40% of the excited molecules while the rest relax to a 3MLCT excited state. The sensitivity of the Kα XES to molecular structure results from a 0.7% average Fe-ligand bond length shift between the 1 s and 2p core-ionized states surfaces.
  •  
4.
  • Liang, Mingli, et al. (författare)
  • Electronic Structure and Trap States of Two-Dimensional Ruddlesden–Popper Perovskites with the Relaxed Goldschmidt Tolerance Factor
  • 2020
  • Ingår i: ACS Applied Electronic Materials. - : American Chemical Society (ACS). - 2637-6113. ; 2:5, s. 1402-1412
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional Ruddlesden–Popper perovskites (2D RPPs) have been considered as promising building blocks for optoelectronic applications owing to optical properties comparable to the ones of 3D perovskites, together with superior stability. In addition, the more flexible structure adopted by such perovskites leads to a relaxation of the Goldschmidt tolerance factor (τ) requirement. Herein, we compare the crystalline and electronic structures, as well as the photophysics of two 2D perovskite single crystals (n-BA)2(MA)2Pb3I10 (BMAPI) and (n-BA)2(EA)2Pb3I10 (BEAPI) (n-BA = n-butylamine) containing small A-cations (MA, methylammonium) and large A-cations (EA, ethylammonium), respectively. The latter presents a relaxed τ (τEA > 1) compared with the requirement of a stable phase in 3D perovskites (τ < 1). Such relaxed τ is beneficial from the structural flexibility of the long organic cation bilayer and the pronounced lattice distortions in the 2D perovskite structures. We further elucidate how the greater lattice distortions concurrently modulate the electronic structure as well as trap densities in these 2D RPPs. The electronic band gap (Eg) of BEAPI (2.08 ± 0.03 eV) is ∼0.17 eV larger than the one of BMAPI (1.91 ± 0.03 eV). This is mainly because of a shift in the valence band maximum associated with the expansion of the Pb–I bond length in BEAPI. In addition, the overall trap state densities for BMAPI and BEAPI are calculated to be ∼2.18 × 1016 and ∼3.76 × 1016 cm–3, respectively, as extracted from the time-resolved photoluminescence studies. The larger trap density in BEAPI can be attributed to the stronger interfacial lattice distortion that sets in when large EA cations are contained into the inorganic crystal lattice.
  •  
5.
  • Liang, Mingli, et al. (författare)
  • Free Carriers versus Self-Trapped Excitons at Different Facets of Ruddlesden-Popper Two-Dimensional Lead Halide Perovskite Single Crystals
  • 2021
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 12:20, s. 4965-4971
  • Tidskriftsartikel (refereegranskat)abstract
    • The physical origin of sub-band gap photoluminescence in Ruddlesden-Poppers two-dimensional (2D) lead halide perovskites (LHPs) is still under debate. In this paper, we studied the photoluminescence features from two different facets of 2D LHP single crystals: the in-plane facet (IF) containing the 2D inorganic layers and the facet perpendicular to the 2D layers (PF). At the IF, the free carriers (FCs) dominate due to the weak electron-phonon coupling in a symmetric lattice. At the PF, the strain accumulation along the 2D layers enhances the electron-phonon coupling and facilitates self-trapped exciton (STE) formation. The time-resolved PL studies indicate that free carriers (FCs) at the IF can move freely and display the trapping by the intrinsic defects. The STEs at the PF are not likely trapped by the defects due to the reduced mobility. However, with increasing STE density, the STE transport is promoted, enabling the trapping of STE by the intrinsic defects.
  •  
6.
  • Meng, Jie, et al. (författare)
  • Modulating Charge-Carrier Dynamics in Mn-Doped All-Inorganic Halide Perovskite Quantum Dots through the Doping-Induced Deep Trap States
  • 2020
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 11:9, s. 3705-3711
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition-metal ion doping has been demonstrated to be effective for tuning the photoluminescence properties of perovskite quantum dots (QDs). However, it would inevitably introduce defects in the lattice. As the Mn concentration increases, the Mn dopant photoluminescence quantum yield (PLQY) first increases and then decreases. Herein the influence of the dopant and the defect states on the photophysics in Mn-doped CsPbCl3 QDs was studied by time-resolved spectroscopies, whereas the energy levels of the possible defect states were analyzed by density functional theory calculations. We reveal the formation of deep interstitials defects (Cli) by Mn2+ doping. The depopulation of initial QD exciton states is a competition between exciton-dopant energy transfer and defect trapping on an early time scale (<100 ps), which determines the final PLQY of the QDs. The present work establishes a robust material optimization guideline for all of the emerging applications where a high PLQY is essential.
  •  
7.
  • Meng, Jie, et al. (författare)
  • Optimizing the quasi-equilibrium state of hot carriers in all-inorganic lead halide perovskite nanocrystals through Mn doping : fundamental dynamics and device perspectives
  • 2022
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 13:6, s. 1734-1745
  • Tidskriftsartikel (refereegranskat)abstract
    • Hot carrier (HC) cooling accounts for the significant energy loss in lead halide perovskite (LHP) solar cells. Here, we study HC relaxation dynamics in Mn-doped LHP CsPbI3 nanocrystals (NCs), combining transient absorption spectroscopy and density functional theory (DFT) calculations. We demonstrate that Mn2+ doping (1) enlarges the longitudinal optical (LO)-acoustic phonon bandgap, (2) enhances the electron-LO phonon coupling strength, and (3) adds HC relaxation pathways via Mn orbitals within the bands. The spectroscopic study shows that the HC cooling process is decelerated after doping under band-edge excitation due to the dominant phonon bandgap enlargement. When the excitation photon energy is larger than the optical bandgap and the Mn2+ transition gap, the doping accelerates the cooling rate owing to the dominant effect of enhanced carrier-phonon coupling and relaxation pathways. We demonstrate that such a phenomenon is optimal for the application of hot carrier solar cells. The enhanced electron-LO phonon coupling and accelerated cooling of high-temperature hot carriers efficiently establish a high-temperature thermal quasi-equilibrium where the excessive energy of the hot carriers is transferred to heat the cold carriers. On the other hand, the enlarged phononic band-gap prevents further cooling of such a quasi-equilibrium, which facilitates the energy conversion process. Our results manifest a straightforward methodology to optimize the HC dynamics for hot carrier solar cells by element doping. This journal is
  •  
8.
  • Tatsuno, Hideyuki, et al. (författare)
  • Hot Branching Dynamics in a Light-Harvesting Iron Carbene Complex Revealed by Ultrafast X-ray Emission Spectroscopy
  • 2020
  • Ingår i: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 59:1, s. 364-372
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron N-heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub-ps X-ray spectroscopy study of an FeIINHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3MLCT state, from the initially excited 1MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3MC state, in competition with vibrational relaxation and cooling to the relaxed 3MLCT state. The relaxed 3MLCT state then decays much more slowly (7.6 ps) to the 3MC state. The 3MC state is rapidly (2.2 ps) deactivated to the ground state. The 5MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition-metal complexes for similar ultrafast decays to optimize photochemical performance.
  •  
9.
  • Tchaplyguine, Maxim, et al. (författare)
  • Single-component surface in binary self-assembled NaK nanoalloy clusters
  • 2009
  • Ingår i: Physical Review B (Condensed Matter and Materials Physics). - 1098-0121 .- 1550-235X. ; 80:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Free metallic nanoalloy clusters created in a self-assembling process out of sodium and potassium mixed vapor have been studied by synchrotron-based photoelectron spectroscopy. The clusters are shown to consist of an alloy core surrounded by a surface layer containing only K in a range of conditions from K-rich to Na-rich nanoalloys. The size of the clusters as well as the fraction of the elements has been estimated from the spectra using our results on pure clusters. The mechanism behind the observed structure is discussed in terms of the total cohesive-energy minimization.
  •  
10.
  • Zheng, Kaibo, et al. (författare)
  • Direct Experimental Evidence for Photoinduced Strong-Coupling Polarons in Organolead Halide Perovskite Nanoparticles
  • 2016
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 7:22, s. 4535-4539
  • Tidskriftsartikel (refereegranskat)abstract
    • Echoing the roaring success of their bulk counterparts, nano-objects built from organolead halide perovskites (OLHP) present bright prospects for surpassing the performances of their conventional organic and inorganic analogues in photodriven technologies. Unraveling the photoinduced charge dynamics is essential for optimizing the optoelectronic functionalities. However, mapping the carrier-lattice interactions remains challenging, owing to their manifestations on multiple length scales and time scales. By correlating ultrafast time-resolved optical and X-ray absorption measurements, this work reveals the photoinduced formation of strong-coupling polarons in CH3NH3PbBr3 nanoparticles. Such polarons originate from the self-trapping of electrons in the Coulombic field caused by the displaced inorganic nuclei and the oriented organic cations. The transient structural change detected at the Pb L3 X-ray absorption edge is well-captured by a distortion with average bond elongation in the [PbBr6]2- motif. General implications for designing novel OLHP nanomaterials targeting the active utilization of these quasi-particles are outlined.
  •  
11.
  • Zhu, Qiushi, et al. (författare)
  • Correlating structure and electronic band-edge properties in organolead halide perovskites nanoparticles
  • 2016
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 18:22, s. 14933-14940
  • Tidskriftsartikel (refereegranskat)abstract
    • After having emerged as primary contenders in the race for highly efficient optoelectronics materials, organolead halide perovskites (OHLP) are now being investigated in the nanoscale regime as promising building blocks with unique properties. For example, unlike their bulk counterpart, quantum dots of OHLP are brightly luminescent, owing to large exciton binding energies that cannot be rationalized solely on the basis of quantum confinement. Here, we establish the direct correlation between the structure and the electronic band-edge properties of CH3NH3PbBr3 nanoparticles. Complementary structural and spectroscopic measurements probing long-range and local order reveal that lattice strain influences the nature of the valence band and modifies the subtle stereochemical activity of the Pb2+ lone-pair. More generally, this work demonstrates that the stereochemical activity of the lone-pair at the metal site is a specific physicochemical parameter coupled to composition, size and strain, which can be employed to engineer novel functionalities in OHLP nanomaterials.
  •  
12.
  • Abdellah, Mohamed, et al. (författare)
  • Drastic difference between hole and electron injection through the gradient shell of CdxSeyZn1−xS1−y quantum dots
  • 2017
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 9:34, s. 12503-12508
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast fluorescence spectroscopy was used to investigate the hole injection in CdxSeyZn1-xS1-y gradient core-shell quantum dot (CSQD) sensitized p-type NiO photocathodes. A series of CSQDs with a wide range of shell thicknesses was studied. Complementary photoelectrochemical cell measurements were carried out to confirm that the hole injection from the active core through the gradient shell to NiO takes place. The hole injection from the valence band of the QDs to NiO depends much less on the shell thickness when compared to the corresponding electron injection to n-type semiconductor (ZnO). We simulate the charge carrier tunneling through the potential barrier due to the gradient shell by numerically solving the Schrodinger equation. The details of the band alignment determining the potential barrier are obtained from X-ray spectroscopy measurements. The observed drastic differences between the hole and electron injection are consistent with a model where the hole effective mass decreases, while the gradient shell thickness increases.
  •  
13.
  • An, Rui, et al. (författare)
  • Photostability and Photodegradation Processes in Colloidal CsPbI3 Perovskite Quantum Dots
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 10:45, s. 39222-39227
  • Tidskriftsartikel (refereegranskat)abstract
    • All-inorganic CsPbI3 perovskite quantum dots (QDs) have attracted intense attention for their successful application in photovoltaics (PVs) and optoelectronics that are enabled by their superior absorption capability and great photoluminescence (PL) properties. However, their photostability remains a practical bottleneck and further optimization is highly desirable. Here, we studied the photostability of as-obtained colloidal CsPbI3 QDs suspended in hexane. We found that light illumination does induce photodegradation of CsPbI3 QDs. Steady-state spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and transient absorption spectroscopy verified that light illumination leads to detachment of the capping agent, collapse of the CsPbI3 QD surface, and finally aggregation of surface Pb0. Both dangling bonds containing surface and Pb0 serve as trap states causing PL quenching with a dramatic decrease of PL quantum yield. Our work provides a detailed insight about the correlation between the structural and photophysical consequences of the photodegradation process in CsPbI3 QDs and may lead to the optimization of such QDs toward device applications.
  •  
14.
  • Baia, L., et al. (författare)
  • TiO2/WO3/Au nanoarchitectures' photocatalytic activity "from degradation intermediates to catalysts' structural peculiarities" Part II: Aerogel based composites - fine details by spectroscopic means
  • 2014
  • Ingår i: Applied Catalysis B: Environmental. - : Elsevier BV. - 0926-3373. ; 148, s. 589-600
  • Tidskriftsartikel (refereegranskat)abstract
    • The "build-up" methodology of a composite photocatalyst is a critical issue regarding the showed photocatalytic performance, including the formation of intermediates. To investigate this issue TiO2/WO3/Au aerogel composites were obtained by sal-gel method and subsequent photoreduction (Au) with UV or visible light. The obtained composites' photocatalytic activity and intermediate formation profiles were evaluated using phenol as a model pollutant. XPS/UPS, XAFS and DRS were used to uncover local coordination, surface chemistry (of the different types of atoms (Ti, W, O and Au) and the band-structure (band-gap, possible electron transitions) of the obtained nanomaterials. The intermediates' evolution profile and structural peculiarities were successfully correlated and it was shown that each minor structural (bulk or surface) change has a significant impact on the photocatalytic activity and intermediate formation dynamics. (c) 2013 Elsevier B.V. All rights reserved.
  •  
15.
  •  
16.
  • Barillot, T., et al. (författare)
  • Attosecond time delays in C-60 valence photoemissions at the giant plasmon
  • 2015
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6596 .- 1742-6588. ; 635, s. 112074-112074
  • Konferensbidrag (refereegranskat)abstract
    • We perform time-dependent local density functional calculations of the time delay in C-60 HOMO and HOMO-1 photoionization at giant plasmon energies. A semiclassical model is used to develop further insights.
  •  
17.
  • Biasin, Elisa, et al. (författare)
  • Femtosecond X-Ray Scattering Study of Ultrafast Photoinduced Structural Dynamics in Solvated[Co(terpy)2]2$
  • 2016
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 1079-7114 .- 0031-9007. ; 117:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the structural dynamics of photoexcited [Co(terpy)2]2+ in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitation event leads to elongation of the Co-N bonds, followed by coherent Co-N bond length oscillations arising from the impulsive excitation of a vibrational mode dominated by the symmetrical stretch of all six Co-N bonds. This mode has a period of 0.33 ps and decays on a subpicosecond time scale. We find that the equilibrium bond-elongated structure of the high spin state is established on a single-picosecond time scale and that this state has a lifetime of ∼7 ps.
  •  
18.
  • Bolbat, Ekaterina, et al. (författare)
  • Synthesis, spectroscopic characterization and catalytic activity of platinum(II) carbene complexes
  • 2016
  • Ingår i: Inorganica Chimica Acta. - : Elsevier BV. - 0020-1693. ; 445, s. 129-133
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel platinum complex with 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidenyl ligand has been synthesized and characterized on the basis of elemental analysis, MS, 1H and 13C NMR spectroscopy, X-ray Absorption Spectroscopy and single crystal X-ray diffraction studies. The XRD determination of the complex (monoclinic, C2/c) revealed a structure in which the platinum (II) centre coordinates two chlorides, a carbon atom of the N-heterocyclic carbene (NHC) and is stabilized by coordinating the nitrogen atom of a 3-chloropyridine molecule, forming an over-all square planar geometry. By prolonging the time of the reaction, it was possible to obtain the trans-dichloridobis(3-chloropyridine) platinum(II) complex under the same reaction conditions. The electronic and molecular properties of both complexes were investigated and compared by means of Near Edge X-ray Absorption Fine Structure spectroscopy (NEXAFS), supported by numerical simulations. The platinum carbene complex obtained was tested in a series of C-H activation and hydrosilylation reactions.
  •  
19.
  • Canton, Sophie E., et al. (författare)
  • Ultrafast Jahn-Teller Photoswitching in Cobalt Single-Ion Magnets
  • 2023
  • Ingår i: Advanced Science. - 2198-3844. ; 10:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2]2+ (terpy = 2,2′:6′,2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.
  •  
20.
  • Chen, Junsheng, et al. (författare)
  • Enhanced Size Selection in Two-Photon Excitation for CsPbBr3 Perovskite Nanocrystals
  • 2017
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 8:20, s. 5119-5124
  • Tidskriftsartikel (refereegranskat)abstract
    • Cesium lead bromide (CsPbBr3) perovskite nanocrystals (NCs), with large two-photon absorption (TPA) cross-section and bright photoluminescence (PL), have been demonstrated as stable two-photon-pumped lasing medium. With two-photon excitation, red-shifted PL spectrum and increased PL lifetime is observed compared with one-photon excitation. We have investigated the origin of such difference using time-resolved laser spectroscopies. We ascribe the difference to the enhanced size selection of NCs by two-photon excitation. Because of inherent nonlinearity, the size dependence of absorption cross-section under TPA is stronger. Consequently, larger size NCs are preferably excited, leading to longer excited-state lifetime and red-shifted PL emission. In a broad view, the enhanced size selection in two-photon excitation of CsPbBr3 NCs is likely a general feature of the perovskite NCs and can be tuned via NC size distribution to influence their performance within NC-based nonlinear optical materials and devices.
  •  
21.
  • Csendes, Z., et al. (författare)
  • Superoxide dismutase inspired Fe(III)-amino acid complexes covalently grafted onto chloropropylated silica gel - Syntheses, structural characterisation and catalytic activity
  • 2013
  • Ingår i: Journal of Molecular Structure. - : Elsevier BV. - 0022-2860. ; 1044, s. 39-45
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work the syntheses, structure and SOD activity of covalently grafted Fe(III)-complexes formed with various N- or C-protected amino acid ligands (L-histidine and L-tyrosine) inspired by the active site of the Fe SOD enzyme are presented. Chloropropylated silica gel was used as support to mimic the proteomic skeleton of the enzyme. Anchored complexes having uniform amino acids as well as their two-component mixtures have been prepared. The products were characterised by mid and far IR and Raman spectroscopies. SOD activities of the substances were determined via the Beauchamp-Fridovich test reaction. It was found that the preparation of covalently anchored Fe(III)-amino acid complexes was successful in many cases. The structures of the anchored complexes and the coordinating groups varied upon changing the conditions of the syntheses. All the covalently immobilised complexes displayed (in some instances appreciable) SOD activity. (C) 2012 Elsevier B.V. All rights reserved.
  •  
22.
  • Csendes, Z., et al. (författare)
  • Synthesis, structural characterisation, and catalytic activity of Mn(II)-protected amino acid complexes covalently immobilised on chloropropylated silica gel
  • 2015
  • Ingår i: Catalysis Today. - : Elsevier BV. - 0920-5861. ; 241, s. 264-269
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work the syntheses, structure, superoxide dismutase (SOD) activity and the catalytic use in the oxidative transformations of cyclohexene of covalently grafted Mn(II)-complexes formed with various C-protected amino acid (L-histidine, L-cysteine and L-cystine) ligands are presented. The structural features of the surface complexes were studied by EPR, X-ray absorption, and mid/far IR spectroscopies. The superoxide dismutase activities of the materials were determined in a biochemical test reaction. The obtained materials were used as catalysts for the oxidation of cyclohexene with peracetic acid in acetone. Covalent grafting and building the complex onto the surface of the chloropropylated silica gel were successful in all cases. It was found that in many instances the structures obtained and the coordinating groups substantially varied upon changing the conditions of the syntheses. All the covalently immobilised Mn(II)-complexes displayed superoxide dismutase activity and could catalyse the oxidation of cyclohexene. (C) 2014 Elsevier B.V. All rights reserved.
  •  
23.
  •  
24.
  • Geng, Huifang, et al. (författare)
  • Controlled synthesis of highly stable lead-free bismuth halide perovskite nanocrystals : tructures and photophysics
  • 2023
  • Ingår i: SCIENCE CHINA Materials. - : Springer Science and Business Media LLC. - 2095-8226 .- 2199-4501. ; 66:5, s. 2079-2089
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, cesium bismuth halide perovskites have emerged as potential substitutes to their counterparts, cesium lead halide perovskites, owing to their low toxicity. However, the photophysics of cesium-bismuth halides nanocrystals (NCs) have not yet been fully rationalized because their structures remain highly debated. The ultraviolet-visible (UV-vis) absorption along with other photophysical properties such as the nature and lifetime of the excited states vary considerably across the previous reports. Here, we successfully synthesize pure Cs3BiBr6 and Cs3Bi2Br9 NCs via a modified hot-injection method, where the structure can be easily controlled by tuning the reaction temperature. The UV-vis absorption spectrum of the pure Cs3Bi2Br9 NCs features two characteristic peaks originating from the absorption of the first exciton and second exciton, respectively, which ultimately clarifies the debate in the previous reports. Using femtosecond transient absorption spectroscopy, we systematically investigate the excited state dynamics of the Cs3Bi2Br9 NCs and reveal that the photoexcited carriers undergo a self-trapping process within 3 ps after excitation. More intriguingly, the Cs3Bi2Br9 NCs prepared by this method show much better photostability than those prepared by the ligand-assisted reprecipitation process. Photodetectors based on these Cs3Bi2Br9 NCs show a sensitive light response, demonstrating the definite potential for breakthrough optoelectronic applications. [Figure not available: see fulltext.].
  •  
25.
  • Haldrup, K., et al. (författare)
  • Guest-Host Interactions Investigated by Time-Resolved X-ray Spectroscopies and Scattering at MHz Rates: Solvation Dynamics and Photoinduced Spin Transition in Aqueous Fe(bipy)(3)(2+)
  • 2012
  • Ingår i: The Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory. - : American Chemical Society (ACS). - 1520-5215. ; 116:40, s. 9878-9887
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the photoinduced low spin (LS) to high spin (HS) conversion of [Fe(bipy)(3)](2+) in aqueous solution. In a laser pump/X-ray probe synchrotron setup permitting simultaneous, time-resolved X-ray diffuse scattering (XDS) and X-ray spectroscopic measurements at a 3.26 MHz repetition rate, we observed the interplay between intramolecular dynamics and the intermolecular caging solvent response with better than 100 ps time resolution. On this time scale, the initial ultrafast spin transition and the associated intramolecular geometric structure changes are long completed, as is the solvent heating due to the initial energy dissipation from the excited HS molecule. Combining information from X-ray emission spectroscopy and scattering, the excitation fraction as well as the temperature and density changes of the solvent can be closely followed on the subnanosecond time scale of the HS lifetime, allowing the detection of an ultrafast change in bulk solvent density. An analysis approach directly utilizing the spectroscopic data in the XDS analysis effectively reduces the number of free parameters, and both combined permit extraction of information about the ultrafast structural dynamics of the caging solvent, in particular, a decrease in the number of water molecules in the first solvation shell is inferred, as predicted by recent theoretical work.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 48

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy