SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carleo Ilaria) "

Sökning: WFRF:(Carleo Ilaria)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beard, Corey, et al. (författare)
  • The TESS-Keck Survey. XVII. Precise Mass Measurements in a Young, High-multiplicity Transiting Planet System Using Radial Velocities and Transit Timing Variations
  • 2024
  • Ingår i: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 167:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a radial velocity (RV) analysis of TOI-1136, a bright Transiting Exoplanet Survey Satellite (TESS) system with six confirmed transiting planets, and a seventh single-transiting planet candidate. All planets in the system are amenable to transmission spectroscopy, making TOI-1136 one of the best targets for intra-system comparison of exoplanet atmospheres. TOI-1136 is young (similar to 700 Myr), and the system exhibits transit timing variations (TTVs). The youth of the system contributes to high stellar variability on the order of 50 m s-1, much larger than the likely RV amplitude of any of the transiting exoplanets. Utilizing 359 High Resolution Echelle Spectrometer and Automated Planet Finder RVs collected as part of the TESS-Keck Survey, and 51 High-Accuracy Radial velocity Planetary Searcher North RVs, we experiment with a joint TTV-RV fit. With seven possible transiting planets, TTVs, more than 400 RVs, and a stellar activity model, we posit that we may be presenting the most complex mass recovery of an exoplanet system in the literature to date. By combining TTVs and RVs, we minimized Gaussian process overfitting and retrieved new masses for this system: (m b-g = 3.50-0.7+0.8 , 6.32-1.3+1.1 , 8.35-1.6+1.8 , 6.07-1.01+1.09 , 9.7-3.7+3.9 , 5.6-3.2+4.1 M circle plus). We are unable to significantly detect the mass of the seventh planet candidate in the RVs, but we are able to loosely constrain a possible orbital period near 80 days. Future TESS observations might confirm the existence of a seventh planet in the system, better constrain the masses and orbital properties of the known exoplanets, and generally shine light on this scientifically interesting system.
  •  
2.
  • Carleo, Ilaria, et al. (författare)
  • The Multiplanet System TOI-421*
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 160:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
  •  
3.
  • Deeg, H., et al. (författare)
  • TOI-1416: A system with a super-Earth planet with a 1.07 d period
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Tidskriftsartikel (refereegranskat)abstract
    • TOI-1416 (BD+42 2504, HIP 70705) is a V =10 late G- or early K-type dwarf star. TESS detected transits in its Sectors 16, 23, and 50 with a depth of about 455 ppm and a period of 1.07 days. Radial velocities (RVs) confirm the presence of the transiting planet TOI-1416 b, which has a mass of 3.48 ± 0.47 M• and a radius of 1.62 ± 0.08 R•, implying a slightly sub-Earth density of 4.500.83+0.99 g cm3. The RV data also further indicate a tentative planet, c, with a period of 27.4 or 29.5 days, whose nature cannot be verified due to strong suspicions of contamination by a signal related to the Moon s synodic period of 29.53 days. The nearly ultra-short-period planet TOI-1416 b is a typical representative of a short-period and hot (Teq ≈ 1570 K) super-Earth-like planet. A planet model of an interior of molten magma containing a significant fraction of dissolved water provides a plausible explanation for its composition, and its atmosphere could be suitable for transmission spectroscopy with JWST. The position of TOI-1416 b within the radius-period distribution corroborates the idea that planets with periods of less than one day do not form any special group. It instead implies that ultra-short-period planets belong to a continuous distribution of super-Earth-like planets with periods ranging from the shortest known ones up to ≈ 30 days; their period-radius distribution is delimited against larger radii by the Neptune Desert and by the period-radius valley that separates super-Earths from sub-Neptune planets. In the abundance of small, short-periodic planets, a notable plateau has emerged between periods of 0.6- 1.4 days, which is compatible with the low-eccentricity formation channel. For the Neptune Desert, its lower limits required a revision due to the increasing population of short-period planets; for periods shorter then 2 days, we establish a radius of 1.6 R• and a mass of 0.028 Mjup (corresponding to 8.9 M•) as the desert s lower limits. We also provide corresponding limits to the Neptune Desert against the planets insolation and effective temperatures.
  •  
4.
  • Hatzes, A., et al. (författare)
  • A Radial Velocity Study of the Planetary System of π Mensae: Improved Planet Parameters for pi Mensae c and a Third Planet on a 125 Day Orbit
  • 2022
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 163:5
  • Tidskriftsartikel (refereegranskat)abstract
    • π Men hosts a transiting planet detected by the Transiting Exoplanet Survey Satellite space mission and an outer planet in a 5.7 yr orbit discovered by radial velocity (RV) surveys. We studied this system using new RV measurements taken with the HARPS spectrograph on ESO's 3.6 m telescope, as well as archival data. We constrain the stellar RV semiamplitude due to the transiting planet, π Men c, as K c = 1.21 ± 0.12 m s-1, resulting in a planet mass of M c = 3.63 ± 0.38 M. A planet radius of R c = 2.145 ± 0.015 R yields a bulk density of ρ c = 2.03 ± 0.22 g cm-3. The precisely determined density of this planet and the brightness of the host star make π Men c an excellent laboratory for internal structure and atmospheric characterization studies. Our HARPS RV measurements also reveal compelling evidence for a third body, π Men d, with a minimum mass M d sin i d = 13.38 ± 1.35 M orbiting with a period of P orb,d = 125 days on an eccentric orbit (e d = 0.22). A simple dynamical analysis indicates that the orbit of π Men d is stable on timescales of at least 20 Myr. Given the mutual inclination between the outer gaseous giant and the inner rocky planet and the presence of a third body at 125 days, π Men is an important planetary system for dynamical and formation studies.
  •  
5.
  • Hobson, Melissa J., et al. (författare)
  • TOI-199 b : A Well-characterized 100 day Transiting Warm Giant Planet with TTVs Seen from Antarctica
  • 2023
  • Ingår i: Astronomical Journal. - 0004-6256. ; 166:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the spectroscopic confirmation and precise mass measurement of the warm giant planet TOI-199 b. This planet was first identified in TESS photometry and confirmed using ground-based photometry from ASTEP in Antarctica including a full 6.5 hr long transit, PEST, Hazelwood, and LCO; space photometry from NEOSSat; and radial velocities (RVs) from FEROS, HARPS, CORALIE, and CHIRON. Orbiting a late G-type star, TOI-199 b has a 104.854 − 0.002 + 0.001 day period, a mass of 0.17 ± 0.02 M J, and a radius of 0.810 ± 0.005 R J. It is the first warm exo-Saturn with a precisely determined mass and radius. The TESS and ASTEP transits show strong transit timing variations (TTVs), pointing to the existence of a second planet in the system. The joint analysis of the RVs and TTVs provides a unique solution for the nontransiting companion TOI-199 c, which has a period of 273.69 − 0.22 + 0.26 days and an estimated mass of 0.28 − 0.01 + 0.02 M J . This period places it within the conservative habitable zone.
  •  
6.
  • Hori, Yasunori, et al. (författare)
  • The Discovery and Follow-up of Four Transiting Short-period Sub-Neptunes Orbiting M Dwarfs
  • 2024
  • Ingår i: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 167:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Sub-Neptunes with radii of 2-3 R ⊕ are intermediate in size between rocky planets and Neptune-sized planets. The orbital properties and bulk compositions of transiting sub-Neptunes provide clues to the formation and evolution of close-in small planets. In this paper, we present the discovery and follow-up of four sub-Neptunes orbiting M dwarfs (TOI-782, TOI-1448, TOI-2120, and TOI-2406), three of which were newly validated by ground-based follow-up observations and statistical analyses. TOI-782 b, TOI-1448 b, TOI-2120 b, and TOI-2406 b have radii of R p = 2.740 − 0.079 + 0.082 R ⊕ , 2.769 − 0.068 + 0.073 R ⊕ , 2.120 ± 0.067 R ⊕, and 2.830 − 0.066 + 0.068 R ⊕ and orbital periods of P = 8.02, 8.11, 5.80, and 3.08 days, respectively. Doppler monitoring with the Subaru/InfraRed Doppler instrument led to 2σ upper limits on the masses of <19.1 M ⊕, <19.5 M ⊕, <6.8 M ⊕, and <15.6 M ⊕ for TOI-782 b, TOI-1448 b, TOI-2120 b, and TOI-2406 b, respectively. The mass-radius relationship of these four sub-Neptunes testifies to the existence of volatile material in their interiors. These four sub-Neptunes, which are located above the so-called “radius valley,” are likely to retain a significant atmosphere and/or an icy mantle on the core, such as a water world. We find that at least three of the four sub-Neptunes (TOI-782 b, TOI-2120 b, and TOI-2406 b), orbiting M dwarfs older than 1 Gyr, are likely to have eccentricities of e ∼ 0.2-0.3. The fact that tidal circularization of their orbits is not achieved over 1 Gyr suggests inefficient tidal dissipation in their interiors.
  •  
7.
  • Korth, Judith, et al. (författare)
  • TOI-1408: Discovery and Photodynamical Modeling of a Small Inner Companion to a Hot Jupiter Revealed by Transit Timing Variations
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 971:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and characterization of a small planet, TOI-1408 c, on a 2.2 day orbit located interior to a previously known hot Jupiter, TOI-1408 b (P = 4.42 days, M = 1.86 ± 0.02 M Jup, R = 2.4 ± 0.5 R Jup) that exhibits grazing transits. The two planets are near 2:1 period commensurability, resulting in significant transit timing variations (TTVs) for both planets and transit duration variations for the inner planet. The TTV amplitude for TOI-1408 c is 15% of the planet’s orbital period, marking the largest TTV amplitude relative to the orbital period measured to date. Photodynamical modeling of ground-based radial velocity (RV) observations and transit light curves obtained with the Transiting Exoplanet Survey Satellite and ground-based facilities leads to an inner planet radius of 2.22 ± 0.06 R ⊕ and mass of 7.6 ± 0.2 M ⊕ that locates the planet into the sub-Neptune regime. The proximity to the 2:1 period commensurability leads to the libration of the resonant argument of the inner planet. The RV measurements support the existence of a third body with an orbital period of several thousand days. This discovery places the system among the rare systems featuring a hot Jupiter accompanied by an inner low-mass planet.
  •  
8.
  • Kuzuhara, Masayuki, et al. (författare)
  • Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Transmission Spectroscopy
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 969:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent discoveries of Earth-sized planets transiting nearby M dwarfs have made it possible to characterize the atmospheres of terrestrial planets via follow-up spectroscopic observations. However, the number of such planets receiving low insolation is still small, limiting our ability to understand the diversity of the atmospheric composition and climates of temperate terrestrial planets. We report the discovery of an Earth-sized planet transiting the nearby (12 pc) inactive M3.0 dwarf Gliese 12 (TOI-6251) with an orbital period (P(or)b) of 12.76 days. The planet, Gliese 12 b, was initially identified as a candidate with an ambiguous P-orb from TESS data. We confirmed the transit signal and P-orb using ground-based photometry with MuSCAT2 and MuSCAT3, and validated the planetary nature of the signal using high-resolution images from Gemini/NIRI and Keck/NIRC2 as well as radial velocity (RV) measurements from the InfraRed Doppler instrument on the Subaru 8.2 m telescope and from CARMENES on the CAHA 3.5 m telescope. X-ray observations with XMM-Newton showed the host star is inactive, with an X-ray-to-bolometric luminosity ratio of log L-X/L-bol approximate to - 5.7. Joint analysis of the light curves and RV measurements revealed that Gliese 12 b has a radius of 0.96 +/- 0.05 R-circle plus, a 3 sigma mass upper limit of 3.9M(circle plus), and an equilibrium temperature of 315 +/- 6 K assuming zero albedo. The transmission spectroscopy metric (TSM) value of Gliese 12 b is close to the TSM values of the TRAPPIST-1 planets, adding Gliese 12 b to the small list of potentially terrestrial, temperate planets amenable to atmospheric characterization with JWST.
  •  
9.
  • Lam, Kristine W. F., et al. (författare)
  • It Takes Two Planets in Resonance to Tango around K2-146
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 159:3
  • Tidskriftsartikel (refereegranskat)abstract
    • K2-146 is a cool, 0.358M dwarf that was found to host a mini-Neptune with a 2.67 day period. The planet exhibited strong transit timing variations (TTVs) of greater than 30 minutes, indicative of the presence of an additional object in the system. Here we report the discovery of the previously undetected outer planet in the system, K2-146 c, using additional photometric data. K2-146 c was found to have a grazing transit geometry and a 3.97 day period. The outer planet was only significantly detected in the latter K2 campaigns presumably because of precession of its orbital plane. The TTVs of K2-146 b and c were measured using observations spanning a baseline of almost 1200 days. We found strong anti -correlation in the TTVs, suggesting the two planets are gravitationally interacting. Our TTV and transit model analyses revealed that K2-146 b has a radius of 2.25 0.10 Re and a mass of 5.6 0.7 Me, whereas K2-146 c has a radius of 2.591 Re and a mass of 7.1 0.9 Me. The inner and outer planets likely have moderate eccentricities of e = 0.14 0.07 and 0.16 0.07, respectively. Long-term numerical integrations of the two -planet orbital solution show that it can be dynamically stable for at least 2 Myr. We show that the resonance angles of the planet pair are librating, which may be an indication that K2-146 b and c are in a 3:2 mean motion resonance. The orbital architecture of the system points to a possible convergent migration origin.
  •  
10.
  • Luque, R., et al. (författare)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
11.
  • Murgas, F., et al. (författare)
  • HD 20329b: An ultra-short-period planet around a solar-type star found by TESS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Ultra-short-period (USP) planets are defined as planets with orbital periods shorter than one day. This type of planets is rare, highly irradiated, and interesting because their formation history is unknown. Aims. We aim to obtain precise mass and radius measurements to confirm the planetary nature of a USP candidate found by the Transiting Exoplanet Survey Satellite (TESS). These parameters can provide insights into the bulk composition of the planet candidate and help to place constraints on its formation history. Methods. We used TESS light curves and HARPS-N spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate found around the star HD 20329 (TOI-4524). We performed a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. Results. We confirm and characterize HD 20329b, a USP planet transiting a solar-type star. The host star (HD 20329, V = 8.74 mag, J = 7.5 mag) is characterized by its G5 spectral type with M∗ = 0.90 ± 0.05 M⊙, R∗ = 1.13 ± 0.02 R⊙, and Teff = 5596 ± 50 K; it is located at a distance d = 63.68 ± 0.29 pc. By jointly fitting the available TESS transit light curves and follow-up radial velocity measurements, we find an orbital period of 0.9261 ± (0.5 ×10-4) days, a planetary radius of 1.72 ± 0.07 R∗, and a mass of 7.42 ± 1.09 M∗, implying a mean density of ρp = 8.06 ± 1.53 g cm-3. HD 20329b joins the ~30 currently known USP planets with radius and Doppler mass measurements.
  •  
12.
  • Nowak, Grzegorz, et al. (författare)
  • K2-280 b - a low density warm sub-Saturn around a mildly evolved star
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 497:4, s. 4423-4435
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an independent discovery and detailed characterization of K2-280 b, a transiting low density warm sub-Saturn in a 19.9-d moderately eccentric orbit (e = 0.35(-0.04)(+0.05)) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280 b has a radius of R-b = 7.50 +/- 0.44 R-circle plus and a mass of M-b = 37.1 +/- 5.6 M-circle plus, yielding a mean density of rho(b) = 0.48(-0.10)(+0.13) g cm(-3). The host star is a mildly evolved G7 star with an effective temperature of T-eff = 5500 +/- 100 K, a surface gravity of log g(star) = 4.21 +/- 0.05 (cgs), and an iron abundance of [Fe/H] = 0.33 +/- 0.08 dex, and with an inferred mass of M-star = 1.03 +/- 0.03 M-circle dot and a radius of R-star = 1.28 +/- 0.07 R-circle dot. We discuss the importance of K2-280 b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar system.
  •  
13.
  • Osborn, H. P., et al. (författare)
  • Two warm Neptunes transiting HIP 9618 revealed by TESS and Cheops
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:2, s. 3069-3089
  • Tidskriftsartikel (refereegranskat)abstract
    • HIP 9618 (HD 12572, TOI-1471, TIC 306263608) is a bright (G = 9.0 mag) solar analogue. TESS photometry revealed the star to have two candidate planets with radii of 3.9 ± 0.044 R (HIP 9618 b) and 3.343 ± 0.039 R (HIP 9618 c). While the 20.77291 d period of HIP 9618 b was measured unambiguously, HIP 9618 c showed only two transits separated by a 680-d gap in the time series, leaving many possibilities for the period. To solve this issue, CHEOPS performed targeted photometry of period aliases to attempt to recover the true period of planet c, and successfully determined the true period to be 52.56349 d. High-resolution spectroscopy with HARPS-N, SOPHIE, and CAFE revealed a mass of 10.0 ± 3.1M for HIP 9618 b, which, according to our interior structure models, corresponds to a 6.8 ± 1.4 per cent gas fraction. HIP 9618 c appears to have a lower mass than HIP 9618 b, with a 3-sigma upper limit of <18M. Follow-up and archival RV measurements also reveal a clear long-term trend which, when combined with imaging and astrometric information, reveal a low-mass companion (0.08+−000512M☉) orbiting at 26.0+−111900 au. This detection makes HIP 9618 one of only five bright (K < 8 mag) transiting multiplanet systems known to host a planet with P > 50 d, opening the door for the atmospheric characterization of warm (Teq < 750 K) sub-Neptunes.
  •  
14.
  • Osborne, H. L.M., et al. (författare)
  • TOI-544 b: a potential water-world inside the radius valley in a two-planet system
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 527:4, s. 11138-11157
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the precise radial velocity follow-up of TOI-544 (HD 290498),ã bright K star ( V = 10.8), which hostsã small transiting planet recently disco v ered by the Trãnsiting Exoplanet Survey Satellite (TESS) . We collected 122 high-resolution High Accuracy Radial velocity Planet Searcher (HARPS)ãnd HARPS-N spectra to spectroscopically confirm the transiting planetãnd measure its mass. The nearly 3-yr baseline of our follow-upãllowed us to unveil the presence ofãnãdditional, non-transiting, longer-period companion planet. We derivedã radiusãnd mass for the inner planet, TOI-544 b, of 2.018 ±0.076 R⊙and 2.89 ±0.48 M⊙, respectively, which givesã bulk density of 1 . 93 + 0 . 30 -0 . 25 g cm -3 . TOI-544 c hasã minimum mass of 21.5 ±2.0 M⊙and orbital period of 50.1 ±0.2 d. The low density of planet-b implies that it has eitherãn Earth-like rocky core withã hydrogenãtmosphere, orã composition which harboursã significant fraction of water. The composition interpretation is degenerate depending on the specific choice of planet interior models used. Additionally, TOI-544 b hasãn orbital period of 1.55 dãnd equilibrium temperature of 999 ±14 K, placing it within the predicted location of the radius valley, where few planetsãre expected. TOI-544 b isã top target for futureãtmospheric observations, for example with JWST , which would enable better constraints of the planet composition.
  •  
15.
  • Persson, Carina, 1964, et al. (författare)
  • Greening of the brown-dwarf desert EPIC 212036875b: a 51 M-J object in a 5-day orbit around an F7V star
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 628
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Although more than 2000 brown dwarfs have been detected to date, mainly from direct imaging, their characterisation is difficult due to their faintness and model-dependent results. In the case of transiting brown dwarfs, however, it is possible to make direct high-precision observations. Aims. Our aim is to investigate the nature and formation of brown dwarfs by adding a new well-characterised object, in terms of its mass, radius and bulk density, to the currently small sample of less than 20 transiting brown dwarfs. Methods. One brown dwarf candidate was found by the KESPRINT consortium when searching for exoplanets in the K2 space mission Campaign 16 field. We combined the K2 photometric data with a series of multicolour photometric observations, imaging, and radial velocity measurements to rule out false positive scenarios and to determine the fundamental properties of the system. Results. We report the discovery and characterisation of a transiting brown dwarf in a 5.17-day eccentric orbit around the slightly evolved F7V star EPIC 212036875. We find a stellar mass of 1.15 +/- 0.08 M-circle dot, a stellar radius of 1.41 +/- 0.05 R-circle dot, and an age of 5.1 +/- 0.9 Gyr. The mass and radius of the companion brown dwarf are 51 +/- 2 M-J and 0.83 +/- 0.03 R-J, respectively, corresponding to a mean density of 108(-13)(+15) g cm(-3). Conclusions. EPIC 212036875 b is a rare object that resides in the brown-dwarf desert. In the mass-density diagram for planets, brown dwarfs, and stars, we find that all giant planets and brown dwarfs follow the same trend from similar to 0.3 M-J to the turn-over to hydrogen burning stars at similar to 73 M-J. EPIC 212036875 b falls close to the theoretical model for mature H/He dominated objects in this diagram as determined by interior structure models. We argue that EPIC 212036875 b formed via gravitational disc instabilities in the outer part of the disc, followed by a quick migration. Orbital tidal circularisation may have started early in its history for a brief period when the brown dwarf's radius was larger. The lack of spin-orbit synchronisation points to a weak stellar dissipation parameter (Q(star)' greater than or similar to 10(8)), which implies a circularisation timescale of greater than or similar to 23 Gyr, or suggests an interaction between the magnetic and tidal forces of the star and the brown dwarf.
  •  
16.
  • Persson, Carina, 1964, et al. (författare)
  • TOI-2196 b: Rare planet in the hot Neptune desert transiting a G-type star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • The hot Neptune desert is a region hosting a small number of short-period Neptunes in the radius-instellation diagram. Highly irradiated planets are usually either small (R less than or similar to 2 R-circle plus) and rocky or they are gas giants with radii of greater than or similar to 1 R-J. Here, we report on the intermediate-sized planet TOI-2196 b (TIC 372172128.01) on a 1.2 day orbit around a G-type star (V = 12.0, [Fe/H] = 0.14 dex) discovered by the Transiting Exoplanet Survey Satellite in sector 27. We collected 41 radial velocity measurements with the HARPS spectrograph to confirm the planetary nature of the transit signal and to determine the mass. The radius of TOI-2196 b is 3.51 +/- 0.15 R-circle plus, which, combined with the mass of 26.0 +/- 1.3 M-circle plus, results in a bulk density of 3.31(-0.43)(+0.51) g cm(-3). Hence, the radius implies that this planet is a sub-Neptune, although the density is twice than that of Neptune. A significant trend in the HARPS radial velocity measurements points to the presence of a distant companion with a lower limit on the period and mass of 220 days and 0.65 M-J, respectively, assuming zero eccentricity. The short period of planet b implies a high equilibrium temperature of 1860 +/- 20 K, for zero albedo and isotropic emission. This places the planet in the hot Neptune desert, joining a group of very few planets in this parameter space discovered in recent years. These planets suggest that the hot Neptune desert may be divided in two parts for planets with equilibrium temperatures of greater than or similar to 1800 K: a hot sub-Neptune desert devoid of planets with radii of approximate to 1.8-3 R-circle plus and a sub-Jovian desert for radii of approximate to 5-12 R-circle plus. More planets in this parameter space are needed to further investigate this finding. Planetary interior structure models of TOI-2196 b are consistent with a H/He atmosphere mass fraction between 0.4% and 3%, with a mean value of 0.7% on top of a rocky interior. We estimated the amount of mass this planet might have lost at a young age and we find that while the mass loss could have been significant, the planet had not changed in terms of character: it was born as a small volatile-rich planet and it remains one at present.
  •  
17.
  • Sedaghati, Elyar, et al. (författare)
  • A spectral survey of WASP-19b with ESPRESSO
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:1, s. 435-458
  • Forskningsöversikt (refereegranskat)abstract
    • High-resolution precision spectroscopy provides a multitude of robust techniques for probing exoplanetary atmospheres. We present multiple VLT/ESPRESSO transit observations of the hot-Jupiter exoplanet WASP-19b with previously published but disputed atmospheric features from lowresolution studies. Through spectral synthesis and modelling of the Rossiter-McLaughlin (RM) effect we calculate stellar, orbital and physical parameters for the system. From narrow-band spectroscopy we do not detect any of HI, FeI, MgI, CaI, NaI, and KI neutral species, placing upper limits on their line contrasts. Through cross-correlation analyses with atmospheric models, we do not detect Fe I and place a 3σ upper limit of log (XFe/X⊙) ≈ -1.83 ± 0.11 on its mass fraction, from injection and retrieval. We show the inability to detect the presence of H2O for known abundances, owing to lack of strong absorption bands, as well as relatively low S/N ratio. We detect a barely significant peak (3.02±0.15 σ) in the cross-correlation map for TiO, consistent with the sub-solar abundance previously reported. This is merely a hint for the presence of TiO and does not constitute a confirmation. However, we do confirm the presence of previously observed enhanced scattering towards blue wavelengths, through chromatic RM measurements, pointing to a hazy atmosphere. We finally present a reanalysis of low-resolution transmission spectra of this exoplanet, concluding that unocculted starspots alone cannot explain previously detected features. Our reanalysis of the FORS2 spectra of WASP-19b finds a ~100× sub-solar TiO abundance, precisely constrained to log XTiO ≈ -7.52 ± 0.38, consistent with the TiO hint from ESPRESSO. We present plausible paths to reconciliation with other seemingly contradicting results.
  •  
18.
  • Subjak, Jan, et al. (författare)
  • TOI-503: The First Known Brown-dwarf Am-star Binary from the TESS Mission
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 159:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of an intermediate-mass transiting brown dwarf (BD), TOI-503b, from the TESS mission. TOI-503b is the first BD discovered by TESS, and it has circular orbit around a metallic-line A-type star with a period of P.=.3.6772.+/-.0.0001 days. The light curve from TESS indicates that TOI-503b transits its host star in a grazing manner, which limits the precision with which we measure the BD's radius ( = R 1.34+ R b 0.150.26 J). We obtained highresolution spectroscopic observations with the FIES, Ondr.ejov, PARAS, Tautenburg, and TRES spectrographs, and measured the mass of TOI-503b to be Mb.=.53.7.+/-.1.2 MJ. The host star has a mass of Ma.=.1.80.+/-.0.06Me, a radius of Ra.=.1.70.+/-.0.05Re, an effective temperature of Teff.=.7650.+/-.160 K, and a relatively high metallicity of 0.61.+/-.0.07 dex. We used stellar isochrones to derive the age of the system to be 180 Myr, which places its age between that of RIK 72b (a 10 Myr old BD in the Upper Scorpius stellar association) and AD 3116b (a 600 Myr old BD in the Praesepe cluster). Given the difficulty in measuring the tidal interactions between BDs and their host stars, we cannot precisely say whether this BD formed in situ or has had its orbit circularized by its host star over the relatively short age of the system. Instead, we offer an examination of plausible values for the tidal quality factor for the star and BD. TOI-503b joins a growing number of known short-period, intermediate-mass BDs orbiting mainsequence stars, and is the second such BD known to transit an A star, after HATS-70b. With the growth in the population in this regime, the driest region in the BD desert (35-55MJ sin i) is reforesting.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy