SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carrington Mary) "

Sökning: WFRF:(Carrington Mary)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Petersdorf, Effie W., et al. (författare)
  • HLA-B leader and survivorship after HLA-mismatched unrelated donor transplantation
  • 2020
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 136:3, s. 362-369
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic cell transplantation (HCT) from HLA-mismatched unrelated donors can cure life-threatening blood disorders, but its success is limited by graft-versus-host disease (GVHD). HLA-B leaders encode methionine (M) or threonine (T) at position 2 and give rise to TT, MT, or MM genotypes. The dimorphic HLA-B leader informs GVHD risk in HLA-B-mismatched HCT. If the leader influences outcome in other HLA-mismatched transplant settings, the success of HCT could be improved for future patients. We determined leader genotypes for 10 415 patients receiving a transplant between 1988 and 2016 from unrelated donors with one HLA-A, HLA-B, HLA-C, HLA-DRB1, or HLA-DQB1 mismatch. Multivariate regression methods were used to evaluate risks associated with patient leader genotype according to the mismatched HLA locus and with HLA-A, HLA-B, HLA-C, HLA-DRB1, or HLA-DQB1 mismatching according to patient leader genotype. The impact of the patient leader genotype on acute GVHD and mortality varied across different mismatched HLA loci. Nonrelapse mortality was higher among HLA-DQB1-mismatched MM patients compared with HLA-DQB1-mismatched TT patients (hazard ratio, 1.35; P = .01). Grades III to IV GVHD risk was higher among HLA-DRB1-mismatched MM or MT patients compared with HLA-DRB1-mismatched TT patients (odds ratio, 2.52 and 1.51, respectively). Patients tolerated a single HLA-DQB1 mismatch better than mismatches at other loci. Outcome after HLA-mismatched transplantation depends on the HLA-B leader dimorphism and the mismatched HLA locus. The patient's leader variant provides new information on the limits of HLA mismatching. The success of HLA-mismatched unrelated transplantation might be enhanced through the judicious selection of mismatched donors for a patient's leader genotype.
  •  
2.
  • Petersdorf, Effie W., et al. (författare)
  • Role of HLA-B exon 1 in graft-versus-host disease after unrelated haemopoietic cell transplantation : a retrospective cohort study
  • 2020
  • Ingår i: The Lancet Haematology. - : ELSEVIER SCI LTD. - 2352-3026. ; 7:1, s. E50-E60
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The success of unrelated haemopoietic cell transplantation (HCT) is limited by graft-versus-host disease (GVHD), which is the main post-transplantation challenge when HLA-matched donors are unavailable. A sequence dimorphism in exon 1 of HLA-B gives rise to leader peptides containing methionine (Met; M) or threonine (Thr; T), which differentially influence natural killer and T-cell alloresponses. The main aim of the study was to evaluate the role of the leader dimorphism in GVHD after HLA-B-mismatched unrelated HCT.Methods: We did a retrospective cohort study of 33 982 patients who received an unrelated HCT done in Australia, Europe, japan, North America, and the UK between jan 1, 1988, and Dec 31, 2016. Data were contributed by participants of the International Histocompatibility Working Group in Hematopoietic Cell Transplantation. All cases were included and there were no exclusion criteria. Multivariate regression models were used to assess risks associated with HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 mismatching. Among the 33 982 transplantations, the risks of GVHD associated with HLA-B M and T leaders were established in 17 100 (50.3%) HLA-matched and 1457 (4.3%) single HLA-B-mismatched transplantations using multivariate regression models. Leader frequencies were defined in 2 004 742 BeTheMatch US registry donors.Findings: Between jan 20, 2017, and March 11, 2019, we assessed 33 982 HCTs using multivariate regression models for the role of HLA mismatching on outcome. Median follow-up was 1841 days (IQR 909-2963). Mortality and GVHD increased with increasing numbers of HLA mismatches. A single HLA-B mismatch increased grade 3-4 acute GVHD (odds ratio [OR] 1.89, 95% CI 1. 53-2.33; p<0.0001). Among the single HLA-B-mismatched transplantations, acute GVHD risk was higher with leader mismatching than with leader matching (OR 1.73, 1.02-2.94; p=0 .042 for grade 2-4) and with an M leader shared allotype compared with a T leader shared allotype (OR 1.98, 1.39-2.81; p=0.0001 for grade 3-4). The preferred HLA-B-mismatched donor is leader-matched and shares a T leader allotype. The majority (1836 939 [91.6%]) of the 2004742 US registry donors have the TT or MT genotype.Interpretation: The HLA-B leader informs GVHD risk after HLA-B-mismatched unrelated HCT and differentiates high-risk HLA-B mismatches from those with lower risk. The leader of the matched allotype could be considered to be as important as the leader of the mismatched allotype for GVHD. Prospective identification of leader-matched donors is feasible for most patients in need of a HCT, and could lower GVHD and increase availability of HCT therapy. These findings are being independently validated and warrant further research in prospective trials. 
  •  
3.
  • Petersdorf, Effie W., et al. (författare)
  • Role of HLA-DP Expression in Graft-Versus-Host Disease After Unrelated Donor Transplantation
  • 2020
  • Ingår i: Journal of Clinical Oncology. - : American Society of Clinical Oncology (ASCO). - 0732-183X .- 1527-7755. ; 38:24, s. 2712-2718
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE The main aim of this study was to evaluate the significance of HLA-DPB1 expression in acute graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) from HLA-A, -B, -C, -DRB1, -DQB1-matched and -mismatched unrelated donors. PATIENTS AND METHODS Between January 1, 2017, and January 10, 2019, we assessed 19,136 patients who received HCT from an HLA-A, -B, -C, -DRB1, -DQB1-matched or -mismatched unrelated donor performed in Australia, the European Union, Japan, North America, and the United Kingdom between 1988 and 2016. Among transplant recipients with one HLA-DPB1 mismatch, the patient's mismatched HLA-DPB1 allotype was defined as low or high expression. Multivariable regression models were used to assess risks of GVHD associated with high expression relative to low expression HLA-DPB1 mismatches. The effect of increasing numbers of HLA-DPB1 mismatches on clinical outcome was assessed in HLA-mismatched transplant recipients. RESULTS In HLA-A, -B, -C, -DRB1,-DQB1-matched transplant recipients, donor mismatching against one high-expression patient HLA-DPB1 increased moderate (odds ratio [OR], 1.36; P = .001) and severe acute GVHD (OR, 1.32; P = .0016) relative to low-expression patient mismatches, regardless of the expression level of the donor's mismatched HLA-DPB1. Among transplant recipients with one HLA-A, -B, -C, -DRB1, or -DQB1 mismatch, the odds of acute GVHD increased with increasing numbers of HLA-DPB1 mismatches (OR, 1.23 for one; OR, 1.40 for two mismatches relative to zero mismatches for moderate GVHD; OR, 1.19 for one; OR, 1.40 for two mismatches relative to zero for severe GVHD), but not with the level of expression of the patient's mismatched HLA-DPB1 allotype. CONCLUSION The level of expression of patient HLA-DPB1 mismatches informs the risk of GVHD after HLA-A, -B, -C, -DRB1, -DQB1-matched unrelated HCT, and the total number of HLA-DPB1 mismatches informs the risk of GVHD after HLA-mismatched unrelated HCT. Prospective consideration of HLA-DPB1 may help to lower GVHD risks after transplantation.
  •  
4.
  • Abi-Rached, Laurent, et al. (författare)
  • The Shaping of Modern Human Immune Systems by Multiregional Admixture with Archaic Humans
  • 2011
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 334:6052, s. 89-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole genome comparisons identified introgression from archaic to modern humans. Our analysis of highly polymorphic human leukocyte antigen (HLA) class I, vital immune system components subject to strong balancing selection, shows how modern humans acquired the HLA-B*73 allele in west Asia through admixture with archaic humans called Denisovans, a likely sister group to the Neandertals. Virtual genotyping of Denisovan and Neandertal genomes identified archaic HLA haplotypes carrying functionally distinctive alleles that have introgressed into modern Eurasian and Oceanian populations. These alleles, of which several encode unique or strong ligands for natural killer cell receptors, now represent more than half the HLA alleles of modern Eurasians and also appear to have been later introduced into Africans. Thus, adaptive introgression of archaic alleles has significantly shaped modern human immune systems.
  •  
5.
  • Goyette, Philippe, et al. (författare)
  • High-density mapping of the MHC identifies a shared role for HLA-DRB1*01 : 03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis
  • 2015
  • Ingår i: Nature Genetics. - New York, USA : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:2, s. 172-179
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.
  •  
6.
  • Wang, Sophia S., et al. (författare)
  • HLA Class I and II Diversity Contributes to the Etiologic Heterogeneity of Non-Hodgkin Lymphoma Subtypes
  • 2018
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 78:14, s. 4086-4096
  • Tidskriftsartikel (refereegranskat)abstract
    • A growing number of loci within the human leukocyte antigen (HLA) region have been implicated in non-Hodgkin lymphoma (NHL) etiology. Here, we test a complementary hypothesis of "heterozygote advantage" regarding the role of HLA and NHL, whereby HLA diversity is beneficial and homozygous HLA loci are associated with increased disease risk. HLA alleles at class I and II loci were imputed from genome-wide association studies (GWAS) using SNP2HLA for 3,617 diffuse large B-cell lymphomas (DLBCL), 2,686 follicular lymphomas (FL), 2,878 chronic lymphocytic leukemia/small lymphocytic lymphomas (CLL/SLL), 741 marginal zone lymphomas (MZL), and 8,753 controls of European descent. Both DLBCL and MZL risk were elevated with homozygosity at class I HLA-B and -C loci (OR DLBCL = 1.31, 95% CI = 1.06-1.60; OR MZL = 1.45, 95% CI = 1.12-1.89) and class II HLA-DRB1 locus (OR DLBCL = 2.10, 95% CI = 1.24-3.55; OR MZL = 2.10, 95% CI = 0.99-4.45). Increased FL risk was observed with the overall increase in number of homozygous HLA class II loci (P trend < 0.0001, FDR = 0.0005). These results support a role for HLA zygosity in NHL etiology and suggests that distinct immune pathways may underly the etiology of the different NHL subtypes. Significance: HLA gene diversity reduces risk for non-Hodgkin lymphoma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy