SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Caux E.) "

Sökning: WFRF:(Caux E.)

  • Resultat 1-25 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Lis, D. C., et al. (författare)
  • Herschel/HIFI discovery of interstellar chloronium (H2Cl+)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first detection of chloronium, H_2Cl^+, in the interstellar medium, using the HIFI instrument aboard the Herschel Space Observatory. The 2_12-1_01 lines of ortho-H\_2^35Cl^+ and ortho-H\_2^37Cl^+ are detected in absorption towards NGC 6334I, and the 1_11-0_00 transition of para-H\_2^35Cl^+ is detected in absorption towards NGC 6334I and Sgr B2(S). The H_2Cl^+ column densities are compared to those of the chemically-related species HCl. The derived HCl/H_2Cl^+ column density ratios, ~1-10, are within the range predicted by models of diffuse and dense photon dominated regions (PDRs). However, the observed H_2Cl^+ column densities, in excess of 10^13 cm^-2, are significantly higher than the model predictions. Our observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints for astrochemical models.
  •  
4.
  • de Graauw, Th., et al. (författare)
  • The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L6-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods: The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480-1250 GHz with SIS mixers and the 1410-1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 × 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 km s-1. Results: After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
5.
  • Gerin, M., et al. (författare)
  • Interstellar CH absorption in the diffuse interstellar medium along the sight-lines to G10.6-0.4 (W31C), W49N, and W51
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L16-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the detection of the ground state N, J = 1, 3/2 -> 1, 1/2 doublet of the methylidyne radical CH at similar to 532 GHz and similar to 536 GHz with the Herschel/ HIFI instrument along the sight-line to the massive star-forming regions G10.6-0.4 (W31C), W49N, and W51. While the molecular cores associated with these massive star-forming regions show emission lines, clouds in the diffuse interstellar medium are detected in absorption against the strong submillimeter background. The combination of hyperfine structure with emission and absorption results in complex profiles, with overlap of the different hyperfine components. The opacities of most of the CH absorption features are linearly correlated with those of CCH, CN, and HCO+ in the same velocity intervals. In specific narrow velocity intervals, the opacities of CN and HCO+ deviate from the mean trends, giving rise to more opaque absorption features. We propose that CCH can be used as another tracer of the molecular gas in the absence of better tracers, with [CCH]/[H2] similar to 3.2 +/- 1.1 x 10-8. The observed [CN]/[CH], [CCH]/[CH] abundance ratios suggest that the bulk of the diffuse matter along the lines of sight has gas densities nH = n(H) + 2n(H2) ranging between 100 and 1000 cm-3).
  •  
6.
  • Gupta, H., et al. (författare)
  • Detection of OH+ and H2O+ towards Orion KL
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L47-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations of the reactive molecular ions OH+, H2O+, and H3O+ towards Orion KL with Herschel/HIFI. All three N = 1-0 fine-structure transitions of OH+ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H2O+ 111-000 transition at 1115 and 1139 GHz were detected; an upper limit was obtained for H3O+. OH+ and H2O+ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s-1, and a broad blueshifted absorption similar to that reported recently for HF and para-H218O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH+ and H2O+ for the 9 km s-1 component of 9 ± 3 × 1012 cm-2 and 7 ± 2 × 1012 cm-2, and those in the outflow of 1.9 ± 0.7 × 1013 cm-2 and 1.0 ± 0.3 × 1013 cm-2. Upper limits of 2.4 × 1012 cm-2 and 8.7 × 1012 cm-2 were derived for the column densities of ortho and para-H3O+ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate.
  •  
7.
  • Lis, D. C., et al. (författare)
  • Herschel/HIFI measurements of the ortho/para ratio in water towards Sagittarius B2(M) and W31C
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L26 -
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Herschel/HIFI observations of the fundamental rotational transitions of ortho- and para-H216O and H218O in absorption towards Sagittarius B2(M) and W31C. The ortho/para ratio in water in the foreground clouds on the line of sight towards these bright continuum sources is generally consistent with the statistical high-temperature ratio of 3, within the observational uncertainties. However, somewhat unexpectedly, we derive a low ortho/para ratio of 2.35 +/- 0.35, corresponding to a spin temperature of similar to 27 K, towards Sagittarius B2(M) at velocities of the expanding molecular ring. Water molecules in this region appear to have formed with, or relaxed to, an ortho/para ratio close to the value corresponding to the local temperature of the gas and dust.
  •  
8.
  • Liseau, René, 1949, et al. (författare)
  • Multi-line detection of O2 toward rho Ophiuchi A
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 541
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Models of pure gas-phase chemistry in well-shielded regions of molecular clouds predict relatively high levels of molecular oxygen, O-2, and water, H2O. These high abundances imply high cooling rates, leading to relatively short timescales for the evolution of gravitationally unstable dense cores, forming stars and planets. Contrary to expectations, the dedicated space missions SWAS and Odin typically found only very small amounts of water vapour and essentially no O-2 in the dense star-forming interstellar medium. Aims. Only toward rho OphA did Odin detect a very weak line of O-2 at 119 GHz in a beam of size 10 arcmin. The line emission of related molecules changes on angular scales of the order of some tens of arcseconds, requiring a larger telescope aperture such as that of the Herschel Space Observatory to resolve the O-2 emission and pinpoint its origin. Methods. We use the Heterodyne Instrument for the Far Infrared (HIFI) aboard Herschel to obtain high resolution O-2 spectra toward selected positions in the rho Oph A core. These data are analysed using standard techniques for O2 excitation and compared to recent PDR-like chemical cloud models. Results. The N-J = 3(3)-1(2) line at 487.2 GHz is clearly detected toward all three observed positions in the rho Oph A core. In addition, an oversampled map of the 5(4)-3(4) transition at 773.8 GHz reveals the detection of the line in only half of the observed area. On the basis of their ratios, the temperature of the O-2 emitting gas appears to vary quite substantially, with warm gas (greater than or similar to 50 K) being adjacent to a much colder region, of temperatures lower than 30 K. Conclusions. The exploited models predict that the O-2 column densities are sensitive to the prevailing dust temperatures, but rather insensitive to the temperatures of the gas. In agreement with these models, the observationally determined O-2 column densities do not seem to depend strongly on the derived gas temperatures, but fall into the range N(O-2) = 3 to greater than or similar to 6 x 10(15) cm(-2). Beam-averaged O-2 abundances are about 5 x 10(-8) relative to H-2. Combining the HIFI data with earlier Odin observations yields a source size at 119 GHz in the range of 4 to 5 arcmin, encompassing the entire rho Oph A core. We speculate that one of the reasons for the generally very low detection rate of O-2 is the short period of time during which O-2 molecules are reasonably abundant in molecular clouds.
  •  
9.
  •  
10.
  • Bruderer, S., et al. (författare)
  • Herschel/HIFI detections of hydrides towards AFGL 2591. Envelope emission versus tenuous cloud absorption
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L44-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory allows the first observations of light diatomic molecules at high spectral resolution and in multiple transitions. Here, we report deep integrations using HIFI in different lines of hydrides towards the high-mass star forming region AFGL 2591. Detected are CH, CH+, NH, OH+, H2O+, while NH+ and SH+ have not been detected. All molecules except for CH and CH+ are seen in absorption with low excitation temperatures and at velocities different from the systemic velocity of the protostellar envelope. Surprisingly, the CH(JF,P = 3/22,- - 1/21,+ ) and CH+(J = 1-0, J = 2-1) lines are detected in emission at the systemic velocity. We can assign the absorption features to a foreground cloud and an outflow lobe, while the CH and CH+ emission stems from the envelope. The observed abundance and excitation of CH and CH+ can be explained in the scenario of FUV irradiated outflow walls, where a cavity etched out by the outflow allows protostellar FUV photons to irradiate and heat the envelope at larger distances driving the chemical reactions that produce these molecules. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Apppendices and Table 1 (pages 6 to 7) are only available in electronic form at http://www.aanda.org
  •  
11.
  • Ceccarelli, C., et al. (författare)
  • Herschel spectral surveys of star- forming regions Overview of the 555-636 GHz range
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L22-
  • Tidskriftsartikel (refereegranskat)abstract
    • High resolution line spectra of star-forming regions are mines of information: they provide unique clues to reconstruct the chemical, dynamical, and physical structure of the observed source. We present the first results from the Herschel key project " Chemical HErschel Surveys of Star forming regions", CHESS. We report and discuss observations towards five CHESS targets, one outflow shock spot and four protostars with luminosities bewteen 20 and 2 x 105 L similar to : L1157-B1, IRAS 16293-2422, OMC2-FIR4, AFGL 2591, and NGC 6334I. The observations were obtained with the heterodyne spectrometer HIFI on board Herschel, with a spectral resolution of 1 MHz. They cover the frequency range 555-636 GHz, a range largely unexplored before the launch of the Herschel satellite. A comparison of the five spectra highlights spectacular differences in the five sources, for example in the density of methanol lines, or the presence./absence of lines from S-bearing molecules or deuterated species. We discuss how these differences can be attributed to the different star-forming mass or evolutionary status.
  •  
12.
  • Codella, C., et al. (författare)
  • The CHESS spectral survey of star forming regions : Peering into the protostellar shock L1157-B1. I. Shock chemical complexity
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L112-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results of the unbiased survey of the L1157-B1 bow shock, obtained with HIFI in the framework of the key program Chemical HErschel Survey of Star forming regions (CHESS). The L1157 outflow is driven by a low-mass Class 0 protostar and is considered the prototype of the so-called chemically active outflows. The bright blue-shifted bow shock B1 is the ideal laboratory for studying the link between the hot (~1000-2000 K) component traced by H2 IR-emission and the cold (~10-20 K) swept-up material. The main aim is to trace the warm gas chemically enriched by the passage of a shock and to infer the excitation conditions in L1157-B1. A total of 27 lines are identified in the 555-636 GHz region, down to an average 3σ level of 30 mK. The emission is dominated by CO(5-4) and H2O(110-101) transitions, as discussed by Lefloch et al. in this volume. Here we report on the identification of lines from NH3, H2CO, CH3OH, CS, HCN, and HCO+. The comparison between the profiles produced by molecules released from dust mantles (NH3, H2CO, CH3OH) and that of H2O is consistent with a scenario in which water is also formed in the gas-phase in high-temperature regions where sputtering or grain-grain collisions are not efficient. The high excitation range of the observed tracers allows us to infer, for the first time for these species, the existence of a warm (≥200 K) gas component coexisting in the B1 bow structure with the cold and hot gas detected from ground. Herschel is an ESA space observatory with science instruments provided by European-led principal Investigator consortia and with important participation from NASA.Table 1 is only available in electronic form at http://www.aanda.org
  •  
13.
  • Comito, C., et al. (författare)
  • Herschel observations of deuterated water towards Sgr B2(M)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L38-
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes - grain surfaces versus energetic process in the gas phase, e. g. in shocks. The HIFI observations of multiple transitions of HDO in Sgr B2(M) presented here allow the determination of the HDO abundance throughout the envelope, which has not been possible before with ground-based observations only. The abundance structure has been modeled with the spherical Monte Carlo radiative transfer code RATRAN, which also takes radiative pumping by continuum emission from dust into account. The modeling reveals that the abundance of HDO rises steeply with temperature from a low abundance (2.5 x 10(-11)) in the outer envelope at temperatures below 100 K through a medium abundance (1.5 x 10(-9)) in the inner envelope/outer core at temperatures between 100 and 200 K, and finally a high abundance (3.5 x 10(-9)) at temperatures above 200 K in the hot core.
  •  
14.
  • Goldsmith, Paul F., et al. (författare)
  • Herschel Measurements of Molecular Oxygen in Orion
  • 2011
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 737:2, s. 96 (1-17)
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations of three rotational transitions of molecular oxygen (O2) in emission from the H2 Peak 1 position of vibrationally excited molecular hydrogen in Orion. We observed the 487 GHz, 774 GHz, and 1121 GHz lines using the Heterodyne Instrument for the Far Infrared on the Herschel Space Observatory, having velocities of 11 km s–1 to 12 km s–1 and widths of 3 km s–1. The beam-averaged column density is N(O2) = 6.5 × 1016 cm–2, and assuming that the source has an equal beam-filling factor for all transitions (beam widths 44, 28, and 19''), the relative line intensities imply a kinetic temperature between 65 K and 120 K. The fractional abundance of O2 relative to H2 is (0.3-7.3) × 10–6. The unusual velocity suggests an association with a ~5'' diameter source, denoted Peak A, the Western Clump, or MF4. The mass of this source is ~10 Msun and the dust temperature is ≥150 K. Our preferred explanation of the enhanced O2 abundance is that dust grains in this region are sufficiently warm (T ≥ 100 K) to desorb water ice and thus keep a significant fraction of elemental oxygen in the gas phase, with a significant fraction as O2. For this small source, the line ratios require a temperature ≥180 K. The inferred O2 column density sime5 × 1018 cm–2 can be produced in Peak A, having N(H2) sime 4 × 1024 cm–2. An alternative mechanism is a low-velocity (10-15 km s–1) C-shock, which can produce N(O2) up to 1017 cm–2.
  •  
15.
  • Johnstone, D., et al. (författare)
  • Herschel/HIFI spectroscopy of the intermediate mass protostar NGC7129 FIRS 2
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L41-
  • Tidskriftsartikel (refereegranskat)abstract
    • Herschel/HIFI observations of water from the intermediate mass protostar NGC 7129 FIRS 2 provide a powerful diagnostic of the physical conditions in this star formation environment. Six spectral settings, covering four (H2O)-O-16 and two (H2O)-O-18 lines, were observed and all but one (H2O)-O-18 line were detected. The four (H2O)-O-16 lines discussed here share a similar morphology: a narrower, approximate to 6kms(-1), component centered slightly redward of the systemic velocity of NGC7129 FIRS 2 and a much broader, approximate to 25 km s(-1) component centered blueward and likely associated with powerful outflows. The narrower components are consistent with emission from water arising in the envelope around the intermediate mass protostar, and the abundance of H2O is constrained to approximate to 10(-7) for the outer envelope. Additionally, the presence of a narrow self-absorption component for the lowest energy lines is likely due to self-absorption from colder water in the outer envelope. The broader component, where the H2O/CO relative abundance is found to be approximate to 0.2, appears to be tracing the same energetic region that produces strong CO emission at high J.
  •  
16.
  •  
17.
  • Lefloch, B., et al. (författare)
  • The CHESS spectral survey of star forming regions : Peering into the protostellar shock L1157-B1. II. Shock dynamics
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L113-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The outflow driven by the low-mass class 0 protostar L1157 is the prototype of the so-called chemically active outflows. The bright bowshock B1 in the southern outflow lobe is a privileged testbed of magneto-hydrodynamical (MHD) shock models, for which dynamical and chemical processes are strongly interdependent. Aims: We present the first results of the unbiased spectral survey of the L1157-B1 bowshock, obtained in the framework of the key program “Chemical HErschel Surveys of star forming regions” (CHESS). The main aim is to trace the warm and chemically enriched gas and to infer the excitation conditions in the shock region. Methods: The CO 5-4 and o-H2O 110-101 lines have been detected at high-spectral resolution in the unbiased spectral survey of the HIFI-band 1b spectral window (555-636 GHz), presented by Codella et al. in this volume. Complementary ground-based observations in the submm window help establish the origin of the emission detected in the main-beam of HIFI and the physical conditions in the shock. Results: Both lines exhibit broad wings, which extend to velocities much higher than reported up to now. We find that the molecular emission arises from two regions with distinct physical conditions : an extended, warm (100 K), dense (3 × 105 cm-3) component at low-velocity, which dominates the water line flux in Band 1; a secondary component in a small region of B1 (a few arcsec) associated with high-velocity, hot (>400 K) gas of moderate density ((1.0-3.0) × 104 cm-3), which appears to dominate the flux of the water line at 179μm observed with PACS. The water abundance is enhanced by two orders of magnitude between the low- and the high-velocity component, from 8 × 10-7 up to 8 × 10-5. The properties of the high-velocity component agree well with the predictions of steady-state C-shock models. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
18.
  • Marseille, M. G., et al. (författare)
  • Water abundances in high-mass protostellar envelopes : Herschel observations with HIFI
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L32-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We derive the dense core structure and the water abundance in four massive star-forming regions in the hope of understanding the earliest stages of massive star formation. Methods: We present Herschel/HIFI observations of the para-H2O 111-000 and 202-111 and the para-H_218O 111-000 transitions. The envelope contribution to the line profiles is separated from contributions by outflows and foreground clouds. The envelope contribution is modeled with Monte-Carlo radiative transfer codes for dust and molecular lines (MC3D and RATRAN), and the water abundance and the turbulent velocity width as free parameters. Results: While the outflows are mostly seen in emission in high-J lines, envelopes are seen in absorption in ground-state lines, which are almost saturated. The derived water abundances range from 5×10-10 to 4×10-8 in the outer envelopes. We detect cold clouds surrounding the protostar envelope, thanks to the very high quality of the Herschel/HIFI data and the unique ability of water to probe them. Several foreground clouds are also detected along the line of sight. Conclusions: The low H2O abundances in massive dense cores are in accordance with the expectation that high densities and low temperatures lead to freeze-out of water on dust grains. The spread in abundance values is not clearly linked to physical properties of the sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation of NASA.Appendix (pages 6 to 7) is only available in electronic form at http://www.aanda.org
  •  
19.
  •  
20.
  • Neufeld, D.A., et al. (författare)
  • Strong absorption by interstellar hydrogen fluoride: Herschel/HIFI observations of the sight-line to G10.6-0.4 (W31C)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:4, s. 108-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the detection of strong absorption by interstellar hydrogen fluoride along the sight-line to the submillimeter continuum source G10.6-0.4 (W31C). We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 1232.4763 GHz J=1-0 HF transition in the upper sideband of the Band 5a receiver. The resultant spectrum shows weak HF emission from G10.6-0.4 at LSR velocities in the range -10 to -3 km/s, accompanied by strong absorption by foreground material at LSR velocities in the range 15 to 50 km/s. The spectrum is similar to that of the 1113.3430 GHz 1(11)-0(00) transition of para-water, although at some frequencies the HF (hydrogen fluoride) optical depth clearly exceeds that of para-H2O. The optically-thick HF absorption that we have observed places a conservative lower limit of 1.6E+14 cm-2 on the HF column density along the sight-line to G10.6-0.4. Our lower limit on the HF abundance, 6E-9 relative to hydrogen nuclei, implies that hydrogen fluoride accounts for between ~ 30 and 100% of the fluorine nuclei in the gas phase along this sight-line. This observation corroborates theoretical predictions that - because the unique thermochemistry of fluorine permits the exothermic reaction of F atoms with molecular hydrogen - HF will be the dominant reservoir of interstellar fluorine under a wide range of conditions.
  •  
21.
  •  
22.
  • Sonnentrucker, P., et al. (författare)
  • Detection of hydrogen fluoride absorption in diffuse molecular clouds with Herschel/HIFI: an ubiquitous tracer of molecular gas
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L12-
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss the detection of absorption by interstellar hydrogen fluoride (HF) along the sight line to the submillimeter continuum sources W49N and W51. We have used Herschel's HIFI instrument in dual beam switch mode to observe the 1232.4762 GHz J = 1-0 HF transition in the upper sideband of the band 5a receiver. We detected foreground absorption by HF toward both sources over a wide range of velocities. Optically thin absorption components were detected on both sight lines, allowing us to measure - as opposed to obtain a lower limit on - the column density of HF for the first time. As in previous observations of HF toward the source G10.6-0.4, the derived HF column density is typically comparable to that of water vapor, even though the elemental abundance of oxygen is greater than that of fluorine by four orders of magnitude. We used the rather uncertain N(CH) - N(H-2) relationship derived previously toward diffuse molecular clouds to infer the molecular hydrogen column density in the clouds exhibiting HF absorption. Within the uncertainties, we find that the abundance of HF with respect to H-2 is consistent with the theoretical prediction that HF is the main reservoir of gas-phase fluorine for these clouds. Thus, hydrogen fluoride has the potential to become an excellent tracer of molecular hydrogen, and provides a sensitive probe of clouds of small H-2 column density. Indeed, the observations of hydrogen fluoride reported here reveal the presence of a low column density diffuse molecular cloud along the W51 sight line, at an LSR velocity of similar to 24 km s(-1), that had not been identified in molecular absorption line studies prior to the launch of Herschel.
  •  
23.
  • Vastel, C., et al. (författare)
  • Ortho-to-para ratio of interstellar heavy water
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L31 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular D/H ratios have been found in the environments of low-mass star-forming regions, and in particular the Class 0 protostar IRAS 16293-2422. Aims. The CHESS (Chemical HErschel Surveys of Star forming regions) key program aims to study the molecular complexity of the interstellar medium. The high sensitivity and spectral resolution of the Herschel/HIFI instrument provide a unique opportunity to observe the fundamental 1(1,1)-0(0,0) transition of the ortho-D2O molecule, which is inaccessible from the ground, and determine the ortho-to-para D2O ratio. Methods. We detected the fundamental transition of the ortho-D2O molecule at 607.35 GHz towards IRAS 16293-2422. The line is seen in absorption with a line opacity of 0.62 +/- 0.11 (1 sigma). From the previous ground-based observations of the fundamental 1(1,0)-1(0,1) transition of para-D2O seen in absorption at 316.80 GHz, we estimate a line opacity of 0.26 +/- 0.05 (1 sigma). Results. We show that the observed absorption is caused by the cold gas in the envelope of the protostar. Using these new observations, we estimate for the first time the ortho-to-para D2O ratio to be lower than 2.6 at a 3 sigma level of uncertainty, which should be compared with the thermal equilibrium value of 2:1.
  •  
24.
  • Wampfler, S. F., et al. (författare)
  • Herschel observations of the hydroxyl radical (OH) in young stellar objects
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L36-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: “Water In Star-forming regions with Herschel” (WISH) is a Herschel key program investigating the water chemistry in young stellar objects (YSOs) during protostellar evolution. Hydroxyl (OH) is one of the reactants in the chemical network most closely linked to the formation and destruction of H2O. High-temperature (T ⪆ 250 K) chemistry connects OH and H2O through the OH + H2 Leftrightarrow H2O + H reactions. Formation of H2O from OH is efficient in the high-temperature regime found in shocks and the innermost part of protostellar envelopes. Moreover, in the presence of UV photons, OH can be produced from the photo-dissociation of H2O through H2O + γUV Rightarrow OH + H. Methods: High-resolution spectroscopy of the 163.12 μm triplet of OH towards HH 46 and NGC 1333 IRAS 2A was carried out with the Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory. The low- and intermediate-mass protostars HH 46, TMR 1, IRAS 15398-3359, DK Cha, NGC 7129 FIRS 2, and NGC 1333 IRAS 2A were observed with the Photodetector Array Camera and Spectrometer (PACS) on Herschel in four transitions of OH and two [O i] lines. Results: The OH transitions at 79, 84, 119, and 163 μm and [O i] emission at 63 and 145 μm were detected with PACS towards the class I low-mass YSOs as well as the intermediate-mass and class I Herbig Ae sources. No OH emission was detected from the class 0 YSO NGC 1333 IRAS 2A, though the 119 μm was detected in absorption. With HIFI, the 163.12 μm was not detected from HH 46 and only tentatively detected from NGC 1333 IRAS 2A. The combination of the PACS and HIFI results for HH 46 constrains the line width (FWHM ⪆ 11 km s-1) and indicates that the OH emission likely originates from shocked gas. This scenario is supported by trends of the OH flux increasing with the [O i] flux and the bolometric luminosity, as found in our sample. Similar OH line ratios for most sources suggest that OH has comparable excitation temperatures despite the different physical properties of the sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices (page 6) are only available in electronic form at http://www.aanda.org
  •  
25.
  • Wiedner, M.C., et al. (författare)
  • Heterodyne Receiver for Origins
  • 2021
  • Ingår i: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Heterodyne Receiver for Origins (HERO) is the first detailed study of a heterodyne focal plane array receiver for space applications. HERO gives the Origins Space Telescope the capability to observe at very high spectral resolution (R = 107) over an unprecedentedly large far-infrared (FIR) wavelengths range (111 to 617 μm) with high sensitivity, with simultaneous dual polarization and dual-frequency band operation. The design is based on prior successful heterodyne receivers, such as Heterodyne Instrument for the Far-Infrared/Herschel, but surpasses it by one to two orders of magnitude by exploiting the latest technological developments. Innovative components are used to keep the required satellite resources low and thus allowing for the first time a convincing design of a large format heterodyne array receiver for space. HERO on Origins is a unique tool to explore the FIR universe and extends the enormous potential of submillimeter astronomical spectroscopy into new areas of astronomical research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy