SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Challis Benjamin) "

Sökning: WFRF:(Challis Benjamin)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  • Harrison, J.R., et al. (författare)
  • Overview of new MAST physics in anticipation of first results from MAST Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The mega amp spherical tokamak (MAST) was a low aspect ratio device (R/a = 0.85/0.65 ∼ 1.3) with similar poloidal cross-section to other medium-size tokamaks. The physics programme concentrates on addressing key physics issues for the operation of ITER, design of DEMO and future spherical tokamaks by utilising high resolution diagnostic measurements closely coupled with theory and modelling to significantly advance our understanding. An empirical scaling of the energy confinement time that favours higher power, lower collisionality devices is consistent with gyrokinetic modelling of electron scale turbulence. Measurements of ion scale turbulence with beam emission spectroscopy and gyrokinetic modelling in up-down symmetric plasmas find that the symmetry of the turbulence is broken by flow shear. Near the non-linear stability threshold, flow shear tilts the density fluctuation correlation function and skews the fluctuation amplitude distribution. Results from fast particle physics studies include the observation that sawteeth are found to redistribute passing and trapped fast particles injected from neutral beam injectors in equal measure, suggesting that resonances between the m = 1 perturbation and the fast ion orbits may be playing a dominant role in the fast ion transport. Measured D-D fusion products from a neutron camera and a charged fusion product detector are 40% lower than predictions from TRANSP/NUBEAM, highlighting possible deficiencies in the guiding centre approximation. Modelling of fast ion losses in the presence of resonant magnetic perturbations (RMPs) can reproduce trends observed in experiments when the plasma response and charge-exchange losses are accounted for. Measurements with a neutral particle analyser during merging-compression start-up indicate the acceleration of ions and electrons. Transport at the plasma edge has been improved through reciprocating probe measurements that have characterised a geodesic acoustic mode at the edge of an ohmic L-mode plasma and particle-in-cell modelling has improved the interpretation of plasma potential estimates from ball-pen probes. The application of RMPs leads to a reduction in particle confinement in L-mode and H-mode and an increase in the core ionization source. The ejection of secondary filaments following type-I ELMs correlates with interactions with surfaces near the X-point. Simulations of the interaction between pairs of filaments in the scrape-off layer suggest this results in modest changes to their velocity, and in most cases can be treated as moving independently. A stochastic model of scrape-off layer profile formation based on the superposition of non-interacting filaments is in good agreement with measured time-average profiles. Transport in the divertor has been improved through fast camera imaging, indicating the presence of a quiescent region devoid of filament near the X-point, extending from the separatrix to ψ n ∼ 1.02. Simulations of turbulent transport in the divertor show that the angle between the divertor leg on the curvature vector strongly influences transport into the private flux region via the interchange mechanism. Coherence imaging measurements show counter-streaming flows of impurities due to gas puffing increasing the pressure on field lines where the gas is ionised. MAST Upgrade is based on the original MAST device, with substantially improved capabilities to operate with a Super-X divertor to test extended divertor leg concepts. SOLPS-ITER modelling predicts the detachment threshold will be reduced by more than a factor of 2, in terms of upstream density, in the Super-X compared with a conventional configuration and that the radiation front movement is passively stabilised before it reaches the X-point. 1D fluid modelling reveals the key role of momentum and power loss mechanisms in governing detachment onset and evolution. Analytic modelling indicates that long legs placed at large major radius, or equivalently low at the target compared with the X-point are more amenable to external control. With MAST Upgrade experiments expected in 2019, a thorough characterisation of the sources of the intrinsic error field has been carried out and a mitigation strategy developed.
  •  
4.
  • Hobirk, J., et al. (författare)
  • The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium
  • 2023
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 63:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challenges arising from 37 MW of injected power in the ITER like wall environment, keeping the radiation in the edge and core controlled, avoiding MHD instabilities and reaching high neutron rates. The Deuterium hybrid plasmas have been re-run in Tritium and methods have been found to keep the radiation controlled but not at high fusion performance probably due to time constraints. For the first time this scenario has been run in Deuterium-Tritium (50:50). These plasmas were re-optimised to have a radiation-stable H-mode entry phase, good impurity control through edge Ti gradient screening and optimised performance with fusion power exceeding 10 MW for longer than three alpha particle slow down times, 8.3 MW averaged over 5 s and fusion energy of 45.8 MJ.
  •  
5.
  • Löfgren, Lars, et al. (författare)
  • Patient-Centric Quantitative Microsampling for Accurate Determination of Urine Albumin to Creatinine Ratio (UACR) in a Clinical Setting
  • 2024
  • Ingår i: The Journal of Applied Laboratory Medicine. - : Oxford University Press (OUP). - 2576-9456 .- 2475-7241. ; 9:2, s. 329-341
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Developing and implementing new patient-centric strategies for drug trials lowers the barrier to participation for some patients by reducing the need to travel to research sites. In early chronic kidney disease (CKD) trials, albuminuria is the key measure for determining treatment effect prior to pivotal kidney outcome trials. Methods: To facilitate albuminuria sample collection outside of a clinical research site, we developed 2 quantitative microsampling methods to determine the urinary albumin to creatinine ratio (UACR). Readout was performed by LC-MS/MS. Results: For the Mitra device the within-batch precision (CV%) was 2.8% to 4.6% and the between-batch precision was 5.3% to 6.1%. Corresponding data for the Capitainer device were 4.0% to 8.6% and 6.7% to 9.0%, respectively. The storage stability at room temperature for 3 weeks was 98% to 103% for both devices. The recovery for the Mitra and Capitainer devices was 104% (SD 7.0%) and 95 (SD 7.4%), respectively. The inter-assay comparison of UACR assessment generated results that were indistinguishable regardless of microsampling technique. The accuracy based on LC-MS/MS vs analysis of neat urine using a clinical chemistry analyzer was assessed in a clinical setting, resulting in 102 ± 8.0% for the Mitra device and 95 ± 10.0% for the Capitainer device. Conclusions: Both UACR microsampling measurements exhibit excellent accuracy and precision compared to a clinical chemistry analyzer using neat urine. We applied our patient-centric sampling strategy to subjects with heart failure in a clinical setting. Precise UACR measurements using quantitative microsampling at home would be beneficial in clinical drug development for kidney therapies.
  •  
6.
  • Mccafferty, Kieran, et al. (författare)
  • HEROIC: a 5-year observational cohort study aimed at identifying novel factors that drive diabetic kidney disease: rationale and study protocol
  • 2020
  • Ingår i: BMJ Open. - : BMJ. - 2044-6055 .- 2044-6055. ; 10:9, s. e033923-
  • Tidskriftsartikel (refereegranskat)abstract
    • Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. INTRODUCTION: Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease worldwide and a major cause of premature mortality in diabetes mellitus (DM). While improvements in care have reduced the incidence of kidney disease among those with DM, the increasing prevalence of DM means that the number of patients worldwide with DKD is increasing. Improved understanding of the biology of DKD and identification of novel therapeutic targets may lead to new treatments. A major challenge to progress has been the heterogeneity of the DKD phenotype and renal progression. To investigate the heterogeneity of DKD we have set up The East and North London Diabetes Cohort (HEROIC) Study, a secondary care-based, multiethnic observational study of patients with biopsy-proven DKD. Our primary objective is to identify histological features of DKD associated with kidney endpoints in a cohort of patients diagnosed with type 1 and type 2 DM, proteinuria and kidney impairment. METHODS AND ANALYSIS: HEROIC is a longitudinal observational study that aims to recruit 500 patients with DKD at high-risk of renal and cardiovascular events. Demographic, clinical and laboratory data will be collected and assessed annually for 5 years. Renal biopsy tissue will be collected and archived at recruitment. Blood and urine samples will be collected at baseline and during annual follow-up visits. Measured glomerular filtration rate (GFR), echocardiography, retinal optical coherence tomography angiography and kidney and cardiac MRI will be performed at baseline and twice more during follow-up. The study is 90% powered to detect an association between key histological and imaging parameters and a composite of death, renal replacement therapy or a 30% decline in estimated GFR. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the Bloomsbury Research Ethics Committee (REC 18-LO-1921). Any patient identifiable data will be stored on a password-protected National Health Services N3 network with full audit trail. Anonymised imaging data will be stored in a ISO27001-certificated data warehouse.Results will be reported through peer-reviewed manuscripts and conferences and disseminated to participants, patients and the public using web-based and social media engagement tools as well as through public events.
  •  
7.
  •  
8.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Tidskriftsartikel (refereegranskat)
  •  
9.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy