SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chanton J.) "

Sökning: WFRF:(Chanton J.)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Loisel, J., et al. (författare)
  • Expert assessment of future vulnerability of the global peatland carbon sink
  • 2021
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 11:1, s. 70-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands are impacted by climate and land-use changes, with feedback to warming by acting as either sources or sinks of carbon. Expert elicitation combined with literature review reveals key drivers of change that alter peatland carbon dynamics, with implications for improving models. The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still omitted from the main Earth system models that are used for future climate change projections, and they are not considered in integrated assessment models that are used in impact and mitigation studies. By using evidence synthesized from the literature and an expert elicitation, we define and quantify the leading drivers of change that have impacted peatland carbon stocks during the Holocene and predict their effect during this century and in the far future. We also identify uncertainties and knowledge gaps in the scientific community and provide insight towards better integration of peatlands into modelling frameworks. Given the importance of the contribution by peatlands to the global carbon cycle, this study shows that peatland science is a critical research area and that we still have a long way to go to fully understand the peatland-carbon-climate nexus.
  •  
2.
  • Schuur, E. A. G., et al. (författare)
  • Expert assessment of vulnerability of permafrost carbon to climate change
  • 2013
  • Ingår i: Climatic Change. - : Springer Science and Business Media LLC. - 0165-0009 .- 1573-1480. ; 119:2, s. 359-374
  • Tidskriftsartikel (refereegranskat)abstract
    • Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19-45 Pg C by 2040, 162-288 Pg C by 2100, and 381-616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.
  •  
3.
  • Holmes, M. E., et al. (författare)
  • Carbon Accumulation, Flux, and Fate in Stordalen Mire, a Permafrost Peatland in Transition
  • 2022
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 36:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Stordalen Mire is a peatland in the discontinuous permafrost zone in arctic Sweden that exhibits a habitat gradient from permafrost palsa, to Sphagnum bog underlain by permafrost, to Eriophorum-dominated fully thawed fen. We used three independent approaches to evaluate the annual, multi-decadal, and millennial apparent carbon accumulation rates (aCAR) across this gradient: seven years of direct semi-continuous measurement of CO2 and CH4 exchange, and 21 core profiles for 210Pb and 14C peat dating. Year-round chamber measurements indicated net carbon balance of −13 ± 8, −49 ± 15, and −91 ± 43 g C m−2 y−1 for the years 2012–2018 in palsa, bog, and fen, respectively. Methane emission offset 2%, 7%, and 17% of the CO2 uptake rate across this gradient. Recent aCAR indicates higher C accumulation rates in surface peats in the palsa and bog compared to current CO2 fluxes, but these assessments are more similar in the fen. aCAR increased from low millennial-scale levels (17–29 g C m−2 y−1) to moderate aCAR of the past century (72–81 g C m−2 y−1) to higher recent aCAR of 90–147 g C m−2 y−1. Recent permafrost collapse, greater inundation and vegetation response has made the landscape a stronger CO2 sink, but this CO2 sink is increasingly offset by rising CH4 emissions, dominated by modern carbon as determined by 14C. The higher CH4 emissions result in higher net CO2-equivalent emissions, indicating that radiative forcing of this mire and similar permafrost ecosystems will exert a warming influence on future climate.
  •  
4.
  • Wilson, R. M., et al. (författare)
  • Functional capacities of microbial communities to carry out large scale geochemical processes are maintained during ex situ anaerobic incubation
  • 2021
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms controlling CO2 and CH4 production in wetlands are central to understanding carbon cycling and greenhouse gas exchange. However, the volatility of these respiration products complicates quantifying their rates of production in the field. Attempts to circumvent the challenges through closed system incubations, from which gases cannot escape, have been used to investigate bulk in situ geochemistry. Efforts towards mapping mechanistic linkages between geochemistry and microbiology have raised concern regarding sampling and incubation-induced perturbations. Microorganisms are impacted by oxygen exposure, increased temperatures and accumulation of metabolic products during handling, storage, and incubation. We probed the extent of these perturbations, and their influence on incubation results, using high-resolution geochemical and microbial gene-based community profiling of anaerobically incubated material from three wetland habitats across a permafrost peatland. We compared the original field samples to the material anaerobically incubated over 50 days. Bulk geochemistry and phylum-level microbiota in incubations largely reflected field observations, but divergence between field and incubations occurred in both geochemistry and lineage-level microbial composition when examined at closer resolution. Despite the changes in representative lineages over time, inferred metabolic function with regards to carbon cycling largely reproduced field results suggesting functional consistency. Habitat differences among the source materials remained the largest driver of variation in geochemical and microbial differences among the samples in both incubations and field results. While incubations may have limited usefulness for identifying specific mechanisms, they remain a viable tool for probing bulk-scale questions related to anaerobic C cycling, including CO2 and CH4 dynamics
  •  
5.
  • Benjamin, Bolduc, et al. (författare)
  • The IsoGenie database : an interdisciplinary data management solution for ecosystems biology and environmental research
  • 2020
  • Ingår i: PeerJ. - : PeerJ. - 2167-8359. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Modern microbial and ecosystem sciences require diverse interdisciplinary teams that are often challenged in “speaking” to one another due to different languages and data product types. Here we introduce the IsoGenie Database (IsoGenieDB; https://isogenie-db.asc.ohio-state.edu/), a de novo developed data management and exploration platform, as a solution to this challenge of accurately representing and integrating heterogenous environmental and microbial data across ecosystem scales. The IsoGenieDB is a public and private data infrastructure designed to store and query data generated by the IsoGenie Project, a ~10 year DOE-funded project focused on discovering ecosystem climate feedbacks in a thawing permafrost landscape. The IsoGenieDB provides (i) a platform for IsoGenie Project members to explore the project’s interdisciplinary datasets across scales through the inherent relationships among data entities, (ii) a framework to consolidate and harmonize the datasets needed by the team’s modelers, and (iii) a public venue that leverages the same spatially explicit, disciplinarily integrated data structure to share published datasets. The IsoGenieDB is also being expanded to cover the NASA-funded Archaea to Atmosphere (A2A) project, which scales the findings of IsoGenie to a broader suite of Arctic peatlands, via the umbrella A2A Database (A2A-DB). The IsoGenieDB’s expandability and flexible architecture allow it to serve as an example ecosystems database.
  •  
6.
  • Börjesson, Gunnar, et al. (författare)
  • A national landfill methane budget for Sweden based on field measurements, and an evaluation of IPCC models
  • 2009
  • Ingår i: Tellus, Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 1600-0889 .- 0280-6509. ; 61:2, s. 424-435
  • Tidskriftsartikel (refereegranskat)abstract
    • Seven Swedish landfills were investigated from 2001 to 2003. On each landfill, a measure of the total methane production was calculated from data on: (1) methane emissions (leakage); (2) methane oxidation and (3) from gas recovery. Methane emissions were determined via a tracer gas (N2O) release-based remote sensing method. N2O and CH4 were measured with an Fourier Transform infrared detector at a distance of more than 1 km downwind from the landfills. Methane oxidation in the landfill covers was measured with the stable carbon isotope method. The efficiency in gas recovery systems proved to be highly variable, but on an average, 51% of the produced landfill gas was captured. A first-order decay model, based on four fractions (waste from households and parks, sludges and industrial waste), showed that the use of a degradable organic carbon fraction (DOCf) value of 0.54, in accordance with the default value for DOCf of 0.50 in the latest IPCC model, gave an emission estimate similar to the official national reports.
  •  
7.
  • Börjesson, Gunnar, et al. (författare)
  • Methane oxidation in Swedish landfills qnantified with the stable carbon isotope technique in combination with an optical method for emitted methane
  • 2007
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 41:19, s. 6684-6690
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane budgets (production = emissions + oxidation + recovery) were estimated for six landfill sites in Sweden. Methane oxidation was measured in downwind plumes with a stable isotope technique (Chariton, J. P., et al., Environ. Sci. TechnoL 1999, 33, 3755-3760.) Positions in plumes for isotope sampling as well as methane emissions were determined with an optical instrument (Fourier Transform InfraRed) in combination with N2O as tracer gas (Galle, B., et al., Environ. Sci. TechnoL 2001, 35,21-25.) Two landfills had been closed for years prior to the measurements, while four were active. Measurements at comparable soil temperatures showed that the two closed landfills had a significantly higher fraction of oxidized methane (38-42% of emission) relative to the four active landfills (4.6-15% of emission). These results highlight the importance of installing and maintaining effective landfill covers and also indicate that substantial amounts of methane escape from active landfills. Based on these results we recommend that the IPCC default values for methane oxidation in managed landfills could be set to 10% for active sites and 20% for closed sites. Gas recovery was found to be highly variable at the different sites, with values from 14% up to 65% of total methane production. The variance can be attributed to different waste management practices.
  •  
8.
  • Börjesson, Gunnar, et al. (författare)
  • Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios
  • 2001
  • Ingår i: Journal of Environmental Quality. - 0047-2425 .- 1537-2537. ; 30:2, s. 369-376
  • Tidskriftsartikel (refereegranskat)abstract
    • The release of methane (CH4) from landfills to the atmosphere and the oxidation of CH( in the cover soils were quantified with static chambers and a C-13-isotope technique on two landfills in Sweden. One of the landfills had been closed and covered 17 years before this investigation while the other was recently covered. On bath landfills, the tops of the landfills were compared with the sloping parts in the summer and winter. Emitted CH4, captured in chambers, was significantly enriched in C-13 during summer compared with winter (P < 0.0001), and was enriched relative to anaerobic-zone methane, The difference between emitted and anaerobic zone delta C-13-CH4 was used to estimate soil methane oxidation. In summer, these differences ranged from 9 to 26 parts per thousand, and CA(4) oxidation was estimated to be between 41 and 50% of the produced CHI in the new landfill, and between 60 and 94% in the old landfill. In winter, when soil temperature was below 0 degreesC, no difference in delta C-13 was observed between emitted and anaerobic-zone CH4 suggesting that there was no soil oxidation. The temperature effect shown in this experiment suggests that there may be both seasonal and latitudinal differences in the importance of landfill CH4 oxidation. Finally the isotopic fractionation factor to) varied from 1.023 to 1.038 and was temperature dependent, increasing at colder temperatures. Methanotrophic bacteria appeared to have high growth efficiencies and the majority of the methane consumed in incubations did not result in immediate CO2 production.
  •  
9.
  • Ellenbogen, Jared B., et al. (författare)
  • Methylotrophy in the Mire : direct and indirect routes for methane production in thawing permafrost
  • 2024
  • Ingår i: mSystems. - 2379-5077. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • While wetlands are major sources of biogenic methane (CH4), our understanding of resident microbial metabolism is incomplete, which compromises the prediction of CH4 emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen Mire in Arctic Sweden. In quadrupling the genomic representation of the site’s methanogens and examining their encoded metabolism, we revealed that nearly 20% of the metagenome-assembled genomes (MAGs) encoded the potential for methylotrophic methanogenesis. Further, 27% of the transcriptionally active methanogens expressed methylotrophic genes; for Methanosarcinales and Methanobacteriales MAGs, these data indicated the use of methylated oxygen compounds (e.g., methanol), while for Methanomassiliicoccales, they primarily implicated methyl sulfides and methylamines. In addition to methanogenic methylotrophy, >1,700 bacterial MAGs across 19 phyla encoded anaerobic methylotrophic potential, with expression across 12 phyla. Metabolomic analyses revealed the presence of diverse methylated compounds in the Mire, including some known methylotrophic substrates. Active methylotrophy was observed across all stages of a permafrost thaw gradient in Stordalen, with the most frozen non-methanogenic palsa found to host bacterial methylotrophy and the partially thawed bog and fully thawed fen seen to house both methanogenic and bacterial methylotrophic activities. Methanogenesis across increasing permafrost thaw is thus revised from the sole dominance of hydrogenotrophic production and the appearance of acetoclastic at full thaw to consider the co-occurrence of methylotrophy throughout. Collectively, these findings indicate that methanogenic and bacterial methylotrophy may be an important and previously underappreciated component of carbon cycling and emissions in these rapidly changing wetland habitats.
  •  
10.
  • Emerson, Joanne B., et al. (författare)
  • Host-linked soil viral ecology along a permafrost thaw gradient
  • 2018
  • Ingår i: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 3:8, s. 870-880
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood(1-7). The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans(8-10), remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling.
  •  
11.
  • Li, Zhen, et al. (författare)
  • Soil incubation methods lead to large differences in inferred methane production temperature sensitivity
  • 2024
  • Ingår i: Environmental Research Letters. - 1748-9326. ; 19:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the temperature sensitivity of methane (CH4) production is crucial for predicting how wetland ecosystems will respond to climate warming. Typically, the temperature sensitivity (often quantified as a Q10 value) is derived from laboratory incubation studies and then used in biogeochemical models. However, studies report wide variation in incubation-inferred Q10 values, with a large portion of this variation remaining unexplained. Here we applied observations in a thawing permafrost peatland (Stordalen Mire) and a well-tested process-rich model (ecosys) to interpret incubation observations and investigate controls on inferred CH4 production temperature sensitivity. We developed a field-storage-incubation modeling approach to mimic the full incubation sequence, including field sampling at a particular time in the growing season, refrigerated storage, and laboratory incubation, followed by model evaluation. We found that CH4 production rates during incubation are regulated by substrate availability and active microbial biomass of key microbial functional groups, which are affected by soil storage duration and temperature. Seasonal variation in substrate availability and active microbial biomass of key microbial functional groups led to strong time-of-sampling impacts on CH4 production. CH4 production is higher with less perturbation post-sampling, i.e. shorter storage duration and lower storage temperature. We found a wide range of inferred Q10 values (1.2–3.5), which we attribute to incubation temperatures, incubation duration, storage duration, and sampling time. We also show that Q10 values of CH4 production are controlled by interacting biological, biochemical, and physical processes, which cause the inferred Q10 values to differ substantially from those of the component processes. Terrestrial ecosystem models that use a constant Q10 value to represent temperature responses may therefore predict biased soil carbon cycling under future climate scenarios.
  •  
12.
  • Mondav, Rhiannon, 1972-, et al. (författare)
  • Discovery of a novel methanogen prevalent in thawing permafrost
  • 2014
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Thawing permafrost promotes microbial degradation of cryo-sequestered and new carbon leading to the biogenic production of methane, creating a positive feedback to climate change. Here we determine microbial community composition along a permafrost thaw gradient in northern Sweden. Partially thawed sites were frequently dominated by a single archaeal phylotype, Candidatus ‘Methanoflorens stordalenmirensis’ gen. nov. sp. nov., belonging to the uncultivated lineage ‘Rice Cluster II’ (Candidatus ‘Methanoflorentaceae’ fam. nov.). Metagenomic sequencing led to the recovery of its near-complete genome, revealing the genes necessary for hydrogenotrophic methanogenesis. These genes are highly expressed and methane carbon isotope data are consistent with hydrogenotrophic production of methane in the partially thawed site. In addition to permafrost wetlands, ‘Methanoflorentaceae’ are widespread in high methane-flux habitats suggesting that this lineage is both prevalent and a major contributor to global methane production. In thawing permafrost, Candidatus ‘M. stordalenmirensis’ appears to be a key mediator of methane-based positive feedback to climate warming.
  •  
13.
  • Singleton, Caitlin M., et al. (författare)
  • Methanotrophy across a natural permafrost thaw environment
  • 2018
  • Ingår i: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 12:10, s. 2544-2558
  • Tidskriftsartikel (refereegranskat)abstract
    • The fate of carbon sequestered in permafrost is a key concern for future global warming as this large carbon stock is rapidly becoming a net methane source due to widespread thaw. Methane release from permafrost is moderated by methanotrophs, which oxidise 20-60% of this methane before emission to the atmosphere. Despite the importance of methanotrophs to carbon cycling, these microorganisms are under-characterised and have not been studied across a natural permafrost thaw gradient. Here, we examine methanotroph communities from the active layer of a permafrost thaw gradient in Stordalen Mire (Abisko, Sweden) spanning three years, analysing 188 metagenomes and 24 metatranscriptomes paired with in situ biogeochemical data. Methanotroph community composition and activity varied significantly as thaw progressed from intact permafrost palsa, to partially thawed bog and fully thawed fen. Thirteen methanotroph population genomes were recovered, including two novel genomes belonging to the uncultivated upland soil cluster alpha (USCa) group and a novel potentially methanotrophic Hyphomicrobiaceae. Combined analysis of porewater delta C-13-CH 4 isotopes and methanotroph abundances showed methane oxidation was greatest below the oxic-anoxic interface in the bog. These results detail the direct effect of thaw on autochthonous methanotroph communities, and their consequent changes in population structure, activity and methane moderation potential.
  •  
14.
  • Wilson, Rachel M., et al. (författare)
  • Hydrogenation of organic matter as a terminal electron sink sustains high CO2 : CH4 production ratios during anaerobic decomposition
  • 2017
  • Ingår i: Organic Geochemistry. - : Elsevier BV. - 0146-6380 .- 1873-5290. ; 112, s. 22-32
  • Tidskriftsartikel (refereegranskat)abstract
    • Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 > 1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces CAC double bonds in organic matter thereby serving as (1) a terminal electron sink, (2) a mechanism for degrading complex unsaturated organic molecules, (3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, (4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios.
  •  
15.
  • Wilson, Rachel M., et al. (författare)
  • Plant organic matter inputs exert a strong control on soil organic matter decomposition in a thawing permafrost peatland
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 820
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands are climate critical carbon (C) reservoirs that could become a C source under continued warming. A strong relationship between plant tissue chemistry and the soil organic matter (SOM) that fuels C gas emissions is inferred, but rarely examined at the molecular level. Here we compared Fourier transform infrared (FT-IR) spectroscopy measurements of solid phase functionalities in plants and SOM to ultra-high-resolution mass spectrometric analyses of plant and SOM water extracts across a palsa-bog-fen thaw and moisture gradient in an Arctic peatland. From these analyses we calculated the C oxidation state (NOSC), a measure which can be used to assess organic matter quality. Palsa plant extracts had the highest NOSC, indicating high quality, whereas extracts of Sphagnum, which dominated the bog, had the lowest NOSC. The percentage of plant compounds that are less bioavailable and accumulate in the peat, increases from palsa (25%) to fen (41%) to bog (47%), reflecting the pattern of percent Sphagnum cover. The pattern of NOSC in the plant extracts was consistent with the high number of consumed compounds in the palsa and low number of consumed compounds in the bog. However, in the FT-IR analysis of the solid phase bog peat, carbohydrate content was high implying high quality SOM. We explain this discrepancy as the result of low solubilization of bog SOM facilitated by the low pH in the bog which makes the solid phase carbohydrates less available to microbial decomposition. Plant-associated condensed aromatics, tannins, and lignin-like compounds declined in the unsaturated palsa peat indicating decomposition, but lignin-like compounds accumulated in the bog and fen peat where decomposition was presumably inhibited by the anaerobic conditions. A molecular-level comparison of the aboveground C sources and peat SOM demonstrates that climate-associated vegetation shifts in peatlands are important controls on the mechanisms underlying changing C gas emissions.
  •  
16.
  • Woodcroft, Ben J., et al. (författare)
  • Genome-centric view of carbon processing in thawing permafrost
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 560:7716, s. 49-
  • Tidskriftsartikel (refereegranskat)abstract
    • As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy