SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Gefei) "

Sökning: WFRF:(Chen Gefei)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Marlene, et al. (författare)
  • Carbonic Anhydrase Generates CO2 and H+ That Drive Spider Silk Formation Via Opposite Effects on the Terminal Domains
  • 2014
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 12:8, s. e1001921-
  • Tidskriftsartikel (refereegranskat)abstract
    • Spider silk fibers are produced from soluble proteins (spidroins) under ambient conditions in a complex but poorly understood process. Spidroins are highly repetitive in sequence but capped by nonrepetitive N- and C-terminal domains (NT and CT) that are suggested to regulate fiber conversion in similar manners. By using ion selective microelectrodes we found that the pH gradient in the silk gland is much broader than previously known. Surprisingly, the terminal domains respond in opposite ways when pH is decreased from 7 to 5: Urea denaturation and temperature stability assays show that NT dimers get significantly stabilized and then lock the spidroins into multimers, whereas CT on the other hand is destabilized and unfolds into ThT-positive beta-sheet amyloid fibrils, which can trigger fiber formation. There is a high carbon dioxide pressure (pCO(2)) in distal parts of the gland, and a CO2 analogue interacts with buried regions in CT as determined by nuclear magnetic resonance (NMR) spectroscopy. Activity staining of histological sections and inhibition experiments reveal that the pH gradient is created by carbonic anhydrase. Carbonic anhydrase activity emerges in the same region of the gland as the opposite effects on NT and CT stability occur. These synchronous events suggest a novel CO2 and proton-dependent lock and trigger mechanism of spider silk formation.
  •  
2.
  • Andrade-Talavera, Yuniesky, et al. (författare)
  • S100A9 amyloid growth and S100A9 fibril-induced impairment of gamma oscillations in area CA3 of mouse hippocampus ex vivo is prevented by Bri2 BRICHOS
  • 2022
  • Ingår i: Progress in Neurobiology. - : Elsevier. - 0301-0082 .- 1873-5118. ; 219
  • Tidskriftsartikel (refereegranskat)abstract
    • The pro-inflammatory and highly amyloidogenic protein S100A9 is central to the amyloid-neuroinflammatory cascade in neurodegenerative diseases leading to cognitive impairment. Molecular chaperone activity of Bri2 BRICHOS has been demonstrated against a range of amyloidogenic polypeptides. Using a combination of thioflavin T fluorescence kinetic assay, atomic force microscopy and immuno electron microscopy we show here that recombinant Bri2 BRICHOS effectively inhibits S100A9 amyloid growth by capping amyloid fibrils. Using ex-vivo neuronal network electrophysiology in mouse brain slices we also show that both native S100A9 and amyloids of S100A9 disrupt cognition-relevant gamma oscillation power and rhythmicity in hippocampal area CA3 in a time- and protein conformation-dependent manner. Both effects were associated with Toll-like receptor 4 (TLR4) activation and were not observed upon TLR4 blockade. Importantly, S100A9 that had co-aggregated with Bri2 BRICHOS did not elicit degradation of gamma oscillations. Taken together, this work provides insights on the potential influence of S100A9 on cognitive dysfunction in Alzheimer's disease (AD) via gamma oscillation impairment from experimentally-induced gamma oscillations, and further highlights Bri2 BRICHOS as a chaperone against detrimental effects of amyloid self-assembly.
  •  
3.
  • Arndt, Tina, et al. (författare)
  • Spidroin N-terminal domain forms amyloid-like fibril based hydrogels and provides a protein immobilization platform
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Recombinant spider silk proteins (spidroins) have multiple potential applications in development of novel biomaterials, but their multimodal and aggregation-prone nature have complicated production and straightforward applications. Here, we report that recombinant miniature spidroins, and importantly also the N-terminal domain (NT) on its own, rapidly form self-supporting and transparent hydrogels at 37 °C. The gelation is caused by NT α-helix to β-sheet conversion and formation of amyloid-like fibrils, and fusion proteins composed of NT and green fluorescent protein or purine nucleoside phosphorylase form hydrogels with intact functions of the fusion moieties. Our findings demonstrate that recombinant NT and fusion proteins give high expression yields and bestow attractive properties to hydrogels, e.g., transparency, cross-linker free gelation and straightforward immobilization of active proteins at high density.
  •  
4.
  • Chen, Gefei, et al. (författare)
  • Bri2 BRICHOS client specificity and chaperone activity are governed by assembly state
  • 2017
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • . Protein misfolding and aggregation is increasingly being recognized as a cause of disease. In Alzheimer's disease the amyloid-beta peptide (A beta) misfolds into neurotoxic oligomers and assembles into amyloid fibrils. The Bri2 protein associated with Familial British and Danish dementias contains a BRICHOS domain, which reduces A beta fibrillization as well as neurotoxicity in vitro and in a Drosophila model, but also rescues proteins from irreversible nonfibrillar aggregation. How these different activities are mediated is not known. Here we show that Bri2 BRICHOS monomers potently prevent neuronal network toxicity of A beta, while dimers strongly suppress A beta fibril formation. The dimers assemble into high-molecular-weight oligomers with an apparent two-fold symmetry, which are efficient inhibitors of non-fibrillar protein aggregation. These results indicate that Bri2 BRICHOS affects qualitatively different aspects of protein misfolding and toxicity via different quaternary structures, suggesting a means to generate molecular chaperone diversity.
  •  
5.
  • Chen, Gefei, et al. (författare)
  • Full-Length Minor Ampullate Spidroin Gene Sequence
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:12, s. e52293-
  • Tidskriftsartikel (refereegranskat)abstract
    • Spider silk includes seven protein based fibers and glue-like substances produced by glands in the spider's abdomen. Minor ampullate silk is used to make the auxiliary spiral of the orb-web and also for wrapping prey, has a high tensile strength and does not supercontract in water. So far, only partial cDNA sequences have been obtained for minor ampullate spidroins (MiSps). Here we describe the first MiSp full-length gene sequence from the spider species Araneus ventricosus, using a multidimensional PCR approach. Comparative analysis of the sequence reveals regulatory elements, as well as unique spidroin gene and protein architecture including the presence of an unusually large intron. The spliced full-length transcript of MiSp gene is 5440 bp in size and encodes 1766 amino acid residues organized into conserved nonrepetitive N- and C-terminal domains and a central predominantly repetitive region composed of four units that are iterated in a non regular manner. The repeats are more conserved within A. ventricosus MiSp than compared to repeats from homologous proteins, and are interrupted by two nonrepetitive spacer regions, which have 100% identity even at the nucleotide level.
  •  
6.
  • Chen, Gefei, et al. (författare)
  • Molecular basis for different substrate-binding sites and chaperone functions of the BRICHOS domain
  • 2024
  • Ingår i: Protein Science. - : Wiley. - 0961-8368 .- 1469-896X. ; 33:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins can misfold into fibrillar or amorphous aggregates and molecular chaperones act as crucial guardians against these undesirable processes. The BRICHOS chaperone domain, found in several otherwise unrelated proproteins that contain amyloidogenic regions, effectively inhibits amyloid formation and toxicity but can in some cases also prevent non-fibrillar, amorphous protein aggregation. Here, we elucidate the molecular basis behind the multifaceted chaperone activities of the BRICHOS domain from the Bri2 proprotein. High-confidence AlphaFold2 and RoseTTAFold predictions suggest that the intramolecular amyloidogenic region (Bri23) is part of the hydrophobic core of the proprotein, where it occupies the proposed amyloid binding site, explaining the markedly reduced ability of the proprotein to prevent an exogenous amyloidogenic peptide from aggregating. However, the BRICHOS-Bri23 complex maintains its ability to form large polydisperse oligomers that prevent amorphous protein aggregation. A cryo-EM-derived model of the Bri2 BRICHOS oligomer is compatible with surface-exposed hydrophobic motifs that get exposed and come together during oligomerization, explaining its effects against amorphous aggregation. These findings provide a molecular basis for the BRICHOS chaperone domain function, where distinct surfaces are employed against different forms of protein aggregation.
  •  
7.
  •  
8.
  • Chen, Gefei, et al. (författare)
  • Short hydrophobic loop motifs in BRICHOS domains determine chaperone activity against amorphous protein aggregation but not against amyloid formation
  • 2023
  • Ingår i: Communications Biology. - : Springer Nature. - 2399-3642. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BRICHOS domain oligomerization exposes three short hydrophobic motifs that are necessary for efficient chaperone activity against amorphous protein aggregation. ATP-independent molecular chaperones are important for maintaining cellular fitness but the molecular determinants for preventing aggregation of partly unfolded protein substrates remain unclear, particularly regarding assembly state and basis for substrate recognition. The BRICHOS domain can perform small heat shock (sHSP)-like chaperone functions to widely different degrees depending on its assembly state and sequence. Here, we observed three hydrophobic sequence motifs in chaperone-active domains, and found that they get surface-exposed when the BRICHOS domain assembles into larger oligomers. Studies of loop-swap variants and site-specific mutants further revealed that the biological hydrophobicities of the three short motifs linearly correlate with the efficiency to prevent amorphous protein aggregation. At the same time, they do not at all correlate with the ability to prevent ordered amyloid fibril formation. The linear correlations also accurately predict activities of chimeras containing short hydrophobic sequence motifs from a sHSP that is unrelated to BRICHOS. Our data indicate that short, exposed hydrophobic motifs brought together by oligomerisation are sufficient and necessary for efficient chaperone activity against amorphous protein aggregation.
  •  
9.
  •  
10.
  • Kaldmäe, Margit, et al. (författare)
  • A “spindle and thread” mechanism unblocks p53 translation by modulating N-terminal disorder
  • 2022
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 30:5, s. 733-742, e1-e7
  • Tidskriftsartikel (refereegranskat)abstract
    • Disordered proteins pose a major challenge to structural biology. A prominent example is the tumor suppressor p53, whose low expression levels and poor conformational stability hamper the development of cancer therapeutics. All these characteristics make it a prime example of “life on the edge of solubility.” Here, we investigate whether these features can be modulated by fusing the protein to a highly soluble spider silk domain (NT∗). The chimeric protein displays highly efficient translation and is fully active in human cancer cells. Biophysical characterization reveals a compact conformation, with the disordered transactivation domain of p53 wrapped around the NT∗ domain. We conclude that interactions with NT∗ help to unblock translation of the proline-rich disordered region of p53. Expression of partially disordered cancer targets is similarly enhanced by NT∗. In summary, we demonstrate that inducing co-translational folding via a molecular “spindle and thread” mechanism unblocks protein translation in vitro.
  •  
11.
  • Kronqvist, Nina, et al. (författare)
  • Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation
  • 2014
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 5:1, s. 3254-
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms controlling the conversion of spider silk proteins into insoluble fibres, which happens in a fraction of a second and in a defined region of the silk glands, are still unresolved. The N-terminal domain changes conformation and forms a homodimer when pH is lowered from 7 to 6; however, the molecular details still remain to be determined. Here we investigate site-directed mutants of the N-terminal domain from Euprosthenops australis major ampullate spidroin 1 and find that the charged residues D40, R60 and K65 mediate intersubunit electrostatic interactions. Protonation of E79 and E119 is required for structural conversions of the subunits into a dimer conformation, and subsequent protonation of E84 around pH 5.7 leads to the formation of a fully stable dimer. These residues are highly conserved, indicating that the now proposed three-step mechanism prevents premature aggregation of spidroins and enables fast formation of spider silk fibres in general.
  •  
12.
  • Leppert, Axel, et al. (författare)
  • ATP-independent molecular chaperone activity generated under reducing conditions
  • 2022
  • Ingår i: Protein Science. - : John Wiley & Sons. - 0961-8368 .- 1469-896X. ; 31:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular chaperones are essential to maintain proteostasis. While the functions of intracellular molecular chaperones that oversee protein synthesis, folding and aggregation, are established, those specialized to work in the extracellular environment are less understood. Extracellular proteins reside in a considerably more oxidizing milieu than cytoplasmic proteins and are stabilized by abundant disulfide bonds. Hence, extracellular proteins are potentially destabilized and sensitive to aggregation under reducing conditions. We combine biochemical and mass spectrometry experiments and elucidate that the molecular chaperone functions of the extracellular protein domain Bri2 BRICHOS only appear under reducing conditions, through the assembly of monomers into large polydisperse oligomers by an intra- to intermolecular disulfide bond relay mechanism. Chaperone-active assemblies of the Bri2 BRICHOS domain are efficiently generated by physiological thiol-containing compounds and proteins, and appear in parallel with reduction-induced aggregation of extracellular proteins. Our results give insights into how potent chaperone activity can be generated from inactive precursors under conditions that are destabilizing to most extracellular proteins and thereby support protein stability/folding in the extracellular space.Significance: Chaperones are essential to cells as they counteract toxic consequences of protein misfolding particularly under stress conditions. Our work describes a novel activation mechanism of an extracellular molecular chaperone domain, called Bri2 BRICHOS. This mechanism is based on reducing conditions that initiate small subunits to assemble into large oligomers via a disulfide relay mechanism. Activated Bri2 BRICHOS inhibits reduction-induced aggregation of extracellular proteins and could be a means to boost proteostasis in the extracellular environment upon reductive stress.
  •  
13.
  • Leppert, Axel, et al. (författare)
  • Liquid-Liquid Phase Separation Primes Spider Silk Proteins for Fiber Formation via a Conditional Sticker Domain
  • 2023
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 23:12, s. 5836-5841
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Many protein condensates can convert to fibrillar aggregates, but the underlying mechanisms are unclear. Liquid-liquid phase separation (LLPS) of spider silk proteins, spidroins, suggests a regulatory switch between both states. Here, we combine microscopy and native mass spectrometry to investigate the influence of protein sequence, ions, and regulatory domains on spidroin LLPS. We find that salting out-effects drive LLPS via low-affinity stickers in the repeat domains. Interestingly, conditions that enable LLPS simultaneously cause dissociation of the dimeric C-terminal domain (CTD), priming it for aggregation. Since the CTD enhances LLPS of spidroins but is also required for their conversion into amyloid-like fibers, we expand the stickers and spacers-model of phase separation with the concept of folded domains as conditional stickers that represent regulatory units.
  •  
14.
  • Oliveira, Daniel V., et al. (författare)
  • Molecular Chaperone BRICHOS Inhibits CADASIL-Mutated NOTCH3 Aggregation In Vitro
  • 2022
  • Ingår i: Frontiers in Molecular Biosciences. - : Frontiers Media SA. - 2296-889X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is the most common familial form of stroke, which is caused by mutations located in the epidermal growth factor (EGF)-like repeats of the NOTCH3 gene. Mutations cause the NOTCH3 (N3) protein to misfold and aggregate. These aggregates will be a component of granular osmiophilic material, which when accumulated around the arteries and arterioles is believed to cause the degradation of vascular smooth muscle cells (VSMC). VSMC degradation affects blood flow regulation and leads to white matter and neuronal death. Currently, there is no treatment for CADASIL. The dementia-relevant BRICHOS domain is a small multitalented protein with functions that include ATP-independent chaperone-like properties. BRICHOS has been shown to prevent the aggregation of both fibrillar and non-fibrillar structures. Therefore, the objective of this study is to investigate whether BRICHOS exhibits anti-aggregating properties on a recombinant CADASIL-mutated N3 protein consisting of the first five repeats of EGF (EGF(1-5)), harboring a cysteine instead of an arginine in the position 133, (R133C). We found that the N3 EGF(1-5) R133C mutant is more prone to aggregate, while the wildtype is more stable. Recombinant human Bri2 BRICHOS is able to interact and stabilize the R133C-mutated N3 protein in a dose-dependent manner. These results suggest an anti-aggregating impact of BRICHOS on the N3 EGF(1-5) R133C protein, which could be a potential treatment for CADASIL.
  •  
15.
  • Poska, Helen, et al. (författare)
  • Recombinant Bri3 BRICHOS domain is a molecular chaperone with effect against amyloid formation and non-fibrillar protein aggregation
  • 2020
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular chaperones assist proteins in achieving a functional structure and prevent them from misfolding into aggregates, including disease-associated deposits. The BRICHOS domain from familial dementia associated protein Bri2 (or ITM2B) probably chaperones its specific proprotein region with high beta-sheet propensity during biosynthesis. Recently, Bri2 BRICHOS activity was found to extend to other amyloidogenic, fibril forming peptides, in particular, Alzheimer's disease associated amyloid-beta peptide, as well as to amorphous aggregate forming proteins. However, the biological functions of the central nervous system specific homologue Bri3 BRICHOS are still to be elucidated. Here we give a detailed characterisation of the recombinant human (rh) Bri3 BRICHOS domain and compare its structural and functional properties with rh Bri2 BRICHOS. The results show that rh Bri3 BRICHOS forms more and larger oligomers, somewhat more efficiently prevents non-fibrillar protein aggregation, and less efficiently reduces A beta 42 fibril formation compared to rh Bri2 BRICHOS. This suggests that Bri2 and Bri3 BRICHOS have overlapping molecular mechanisms and that their apparently different tissue expression and processing may result in different physiological functions.
  •  
16.
  • Qi, Xingmei, et al. (författare)
  • Spider silk protein forms amyloid-like nanofibrils through a non-nucleation-dependent polymerization mechanism
  • 2023
  • Ingår i: Small. - : John Wiley & Sons. - 1613-6810 .- 1613-6829. ; 18:46
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid fibrils—nanoscale fibrillar aggregates with high levels of order—are pathogenic in some today incurable human diseases; however, there are also many physiologically functioning amyloids in nature. The process of amyloid formation is typically nucleation-elongation-dependent, as exemplified by the pathogenic amyloid-β peptide (Aβ) that is associated with Alzheimer's disease. Spider silk, one of the toughest biomaterials, shares characteristics with amyloid. In this study, it is shown that forming amyloid-like nanofibrils is an inherent property preserved by various spider silk proteins (spidroins). Both spidroins and Aβ capped by spidroin N- and C-terminal domains, can assemble into macroscopic spider silk-like fibers that consist of straight nanofibrils parallel to the fiber axis as observed in native spider silk. While Aβ forms amyloid nanofibrils through a nucleation-dependent pathway and exhibits strong cytotoxicity and seeding effects, spidroins spontaneously and rapidly form amyloid-like nanofibrils via a non-nucleation-dependent polymerization pathway that involves lateral packing of fibrils. Spidroin nanofibrils share amyloid-like properties but lack strong cytotoxicity and the ability to self-seed or cross-seed human amyloidogenic peptides. These results suggest that spidroins' unique primary structures have evolved to allow functional properties of amyloid, and at the same time direct their fibrillization pathways to avoid formation of cytotoxic intermediates.
  •  
17.
  • Qi, Xingmei, et al. (författare)
  • Spider Silk Protein Forms Amyloid-Like Nanofibrils through a Non-Nucleation-Dependent Polymerization Mechanism (Small 46/2023)
  • 2023
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 19:46
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid fibrils—nanoscale fibrillar aggregates with high levels of order—are pathogenic in some today incurable human diseases; however, there are also many physiologically functioning amyloids in nature. The process of amyloid formation is typically nucleation-elongation-dependent, as exemplified by the pathogenic amyloid-β peptide (Aβ) that is associated with Alzheimer's disease. Spider silk, one of the toughest biomaterials, shares characteristics with amyloid. In this study, it is shown that forming amyloid-like nanofibrils is an inherent property preserved by various spider silk proteins (spidroins). Both spidroins and Aβ capped by spidroin N- and C-terminal domains, can assemble into macroscopic spider silk-like fibers that consist of straight nanofibrils parallel to the fiber axis as observed in native spider silk. While Aβ forms amyloid nanofibrils through a nucleation-dependent pathway and exhibits strong cytotoxicity and seeding effects, spidroins spontaneously and rapidly form amyloid-like nanofibrils via a non-nucleation-dependent polymerization pathway that involves lateral packing of fibrils. Spidroin nanofibrils share amyloid-like properties but lack strong cytotoxicity and the ability to self-seed or cross-seed human amyloidogenic peptides. These results suggest that spidroins´ unique primary structures have evolved to allow functional properties of amyloid, and at the same time direct their fibrillization pathways to avoid formation of cytotoxic intermediates.
  •  
18.
  • Qi, Xingmei, et al. (författare)
  • Spiders use structural conversion of globular amyloidogenic domains to make strong silk fibers
  • 2024
  • Ingår i: Advanced Functional Materials. - : Wiley-VCH Verlagsgesellschaft. - 1616-301X .- 1616-3028. ; 34:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Spider silk—an environmentally friendly protein-based material—is widely recognized for its extraordinary mechanical properties. Biomimetic spider silk-like fibers made from recombinant spider silk proteins (spidroins) currently falls short compared to natural silks in terms of mechanical performance. In this study, it is discovered that spiders use structural conversion of molecular enhancers—conserved globular 127-residue spacer domains—to make strong silk fibers. This domain lacks poly-Ala motifs but interestingly contains motifs that are similar to human amyloidogenic motifs, and that it self-assembles into amyloid-like fibrils through a non-nucleation-dependent pathway, likely to avoid the formation of cytotoxic intermediates. Incorporating this spacer domain into a recombinant chimeric spidroin facilitates self-assembly into silk-like fibers, increases fiber molecular homogeneity, and markedly enhances fiber mechanical strength. These findings highlight that spiders employ diverse strategies to produce silk with exceptional mechanical properties. The spacer domain offers a way to enhance the properties of recombinant spider silk-like fibers and other functional materials.
  •  
19.
  • Rising, Anna, et al. (författare)
  • AA amyloid in human food chain is a possible biohazard
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • AA amyloidosis can be transmitted experimentally in several mammalian and avian species as well as spontaneously between captive animals, even by oral intake of amyloid seeds. Amyloid seeding can cross species boundaries, and fibrils of one kind of amyloid protein may also seed other types. Here we show that meat from Swedish and Italian cattle for consumption by humans often contains AA amyloid and that bovine AA fibrils efficiently cross-seed human amyloid beta peptide, associated with Alzheimer's disease.
  •  
20.
  • Saluri, Mihkel, et al. (författare)
  • A “grappling hook” interaction connects self-assembly and chaperone activity of Nucleophosmin 1
  • 2023
  • Ingår i: pnas nexus. - : Oxford University Press (OUP). - 2752-6542. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • How the self-assembly of partially disordered proteins generates functional compartments in the cytoplasm and particularly in the nucleus is poorly understood. Nucleophosmin 1 (NPM1) is an abundant nucleolar protein that forms large oligomers and undergoes liquid-liquid phase separation by binding RNA or ribosomal proteins. It provides the scaffold for ribosome assembly but also prevents protein aggregation as part of the cellular stress response. Here, we use aggregation assays and native mass spectrometry (MS) to examine the relationship between the self-assembly and chaperone activity of NPM1. We find that oligomerization of full-length NPM1 modulates its ability to retard amyloid formation in vitro. Machine learning-based structure prediction and cryo-electron microscopy reveal fuzzy interactions between the acidic disordered region and the C-terminal nucleotide-binding domain, which cross-link NPM1 pentamers into partially disordered oligomers. The addition of basic peptides results in a tighter association within the oligomers, reducing their capacity to prevent amyloid formation. Together, our findings show that NPM1 uses a grappling hook mechanism to form a network-like structure that traps aggregation-prone proteins. Nucleolar proteins and RNAs simultaneously modulate the association strength and chaperone activity, suggesting a mechanism by which nucleolar composition regulates the chaperone activity of NPM1.
  •  
21.
  • Sarr, Medoune, et al. (författare)
  • A spidroin-derived solubility tag enables controlled aggregation of a designed amyloid protein
  • 2018
  • Ingår i: The FEBS Journal. - : WILEY. - 1742-464X .- 1742-4658. ; 285:10, s. 1873-1885
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloidogenesis is associated with more than 30 diseases, but the molecular mechanisms involved in cell toxicity and fibril formation remain largely unknown. The inherent tendency of amyloid-forming proteins to aggregate renders expression, purification, and experimental studies challenging. NT* is a solubility tag derived from a spider silk protein that was recently introduced for the production of several aggregation-prone peptides and proteins at high yields. Herein, we investigate whether fusion to NT* can prevent amyloid fibril formation and enable controlled aggregation for experimental studies. As an example of an amyloidogenic protein, we chose the de novo-designed polypeptide 17. The fusion protein NT*-17 was recombinantly expressed in Escherichia coli to produce high amounts of soluble and mostly monomeric protein. Structural analysis showed that 17 is kept in a largely unstructured conformation in fusion with NT*. After proteolytic release, 17 adopts a -sheet conformation in a pH- and salt-dependent manner and assembles into amyloid-like fibrils. The ability of NT* to prevent premature aggregation and to enable structural studies of prefibrillar states may facilitate investigation of proteins involved in amyloid diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21
Typ av publikation
tidskriftsartikel (20)
annan publikation (1)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Chen, Gefei (21)
Johansson, Jan (18)
Landreh, Michael (11)
Leppert, Axel (10)
Rising, Anna (9)
Abelein, Axel (5)
visa fler...
Hebert, Hans (5)
Kronqvist, Nina (5)
Sahin, Cagla (4)
Wang, Yu (4)
Jaudzems, Kristaps (4)
Meng, Qing (3)
Iashchishyn, Igor (3)
Arsenian Henriksson, ... (2)
Nilsson, Harriet (2)
Westermark, Per (2)
Andersson, Marlene (2)
Otikovs, Martins (2)
Nordling, Kerstin (2)
Andrade-Talavera, Yu ... (2)
Fisahn, André (2)
Morozova-Roche, Ludm ... (2)
Arndt, Tina (2)
Johansson, J (1)
Barth, Andreas (1)
Kumar, Rakesh (1)
Nilsson, Lennart (1)
Österlund, Nicklas (1)
Ilag, Leopold L (1)
Allison, Timothy M (1)
Gilthorpe, Jonathan ... (1)
Zubarev, Roman A (1)
Holm, Lena (1)
Fritz, Nicolas (1)
Widengren, Jerker (1)
Aleksis, Rihards (1)
Strömberg, Roger (1)
Elofsson, Arne, 1966 ... (1)
Westermark, Gunilla (1)
Purhonen, Pasi (1)
Jornvall, Hans (1)
Knight, Stefan (1)
Ridderstråle, Yvonne (1)
Chesler, Mitchell (1)
Pansieri, Jonathan (1)
Arroyo-García, Luis ... (1)
Toleikis, Zigmantas (1)
Smirnovas, Vytautas (1)
Morozova-Roche, Ludm ... (1)
Hallberg, B Martin (1)
visa färre...
Lärosäte
Karolinska Institutet (19)
Kungliga Tekniska Högskolan (10)
Uppsala universitet (8)
Sveriges Lantbruksuniversitet (8)
Umeå universitet (5)
Stockholms universitet (3)
visa fler...
Linköpings universitet (1)
visa färre...
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)
Medicin och hälsovetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy