SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Liming) "

Sökning: WFRF:(Chen Liming)

  • Resultat 1-25 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Kanoni, Stavroula, et al. (författare)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
3.
  • Zhou, Wei, et al. (författare)
  • Global Biobank Meta-analysis Initiative : Powering genetic discovery across human disease
  • 2022
  • Ingår i: Cell Genomics. - : Elsevier. - 2666-979X. ; 2:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)-a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.
  •  
4.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
5.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
6.
  •  
7.
  • Lensink, Marc F., et al. (författare)
  • Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment
  • 2023
  • Ingår i: Proteins. - : WILEY. - 0887-3585 .- 1097-0134.
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average similar to 70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.
  •  
8.
  • Takeuchi, Fumihiko, et al. (författare)
  • Interethnic analyses of blood pressure loci in populations of East Asian and European descent
  • 2018
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200 genetic loci associated with BP are known. Here, we perform a multi-stage genome-wide association study for BP (max N = 289,038) principally in East Asians and meta-analysis in East Asians and Europeans. We report 19 new genetic loci and ancestry-specific BP variants, conforming to a common ancestry-specific variant association model. At 10 unique loci, distinct non-rare ancestry-specific variants colocalize within the same linkage disequilibrium block despite the significantly discordant effects for the proxy shared variants between the ethnic groups. The genome-wide transethnic correlation of causal-variant effect-sizes is 0.898 and 0.851 for systolic and diastolic BP, respectively. Some of the ancestry-specific association signals are also influenced by a selective sweep. Our results provide new evidence for the role of common ancestry-specific variants and natural selection in ethnic differences in complex traits such as BP.
  •  
9.
  • Chen, Xiulai, et al. (författare)
  • DCEO Biotechnology: Tools to Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals
  • 2018
  • Ingår i: Chemical Reviews. - : American Chemical Society (ACS). - 0009-2665 .- 1520-6890. ; 118:1, s. 4-72
  • Forskningsöversikt (refereegranskat)abstract
    • Chemical synthesis is a well established route for producing many chemicals on a large scale, but some drawbacks still exist in this process, such as unstable intermediates, multistep reactions, complex process control, etc. Biobased production provides an attractive alternative to these challenges, but how to make cells into efficient factories is challenging. As a key enabling technology to develop efficient cell factories, design-construction-evaluation-optimization (DCEO) biotechnology, which incorporates the concepts and techniques of pathway design, pathway construction, pathway evaluation, and pathway optimization at the systems level, offers a conceptual and technological framework to exploit potential pathways, modify existing pathways and create new pathways for the optimal production of desired chemicals. Here, we summarize recent progress of DCEO biotechnology and examples of its application, and provide insights as to when, what and how different strategies should be taken. In addition, we highlight future perspectives of DCEO biotechnology for the successful establishment of biorefineries.
  •  
10.
  • Laisk, Triin, et al. (författare)
  • The genetic architecture of sporadic and multiple consecutive miscarriage.
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Miscarriage is a common, complex trait affecting ~15% of clinically confirmed pregnancies. Here we present the results of large-scale genetic association analyses with 69,054 cases from five different ancestries for sporadic miscarriage, 750 cases of European ancestry for multiple (≥3) consecutive miscarriage, and up to 359,469 female controls. We identify one genome-wide significant association (rs146350366, minor allele frequency (MAF) 1.2%, P=3.2 × 10-8, odds ratio (OR)=1.4) for sporadic miscarriage in our European ancestry meta-analysis and three genome-wide significant associations for multiple consecutive miscarriage (rs7859844, MAF=6.4%, P=1.3 × 10-8, OR=1.7; rs143445068, MAF=0.8%, P=5.2 × 10-9, OR=3.4; rs183453668, MAF=0.5%, P=2.8 × 10-8, OR=3.8). We further investigate the genetic architecture of miscarriage with biobank-scale Mendelian randomization, heritability, and genetic correlation analyses. Our results show that miscarriage etiopathogenesis is partly driven by genetic variation potentially related to placental biology, and illustrate the utility of large-scale biobank data for understanding this pregnancy complication.
  •  
11.
  •  
12.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
13.
  • Mendelson, Michael M., et al. (författare)
  • Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease : A Mendelian Randomization Approach
  • 2017
  • Ingår i: PLoS Medicine. - : PUBLIC LIBRARY SCIENCE. - 1549-1277 .- 1549-1676. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. Methods and Findings We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. Conclusions We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases.
  •  
14.
  • Speliotes, Elizabeth K., et al. (författare)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
15.
  • Xia, Jianyang, et al. (författare)
  • Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region
  • 2017
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 122:2, s. 430-446
  • Tidskriftsartikel (refereegranskat)abstract
    • Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and an improved representation of the C cycle in permafrost regions in the current generation of Earth system models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246±6gCm-2yr-1), most models produced higher NPP (309±12gCm-2yr-1) over the permafrost region during 2000-2009. By comparing the simulated gross primary productivity (GPP) with a flux tower-based database, we found that although mean GPP among the models was only overestimated by 10% over 1982-2009, there was a twofold discrepancy among models (380 to 800gCm-2yr-1), which mainly resulted from differences in simulated maximum monthly GPP (GPPmax). Most models overestimated C use efficiency (CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vcmax_25), respectively. The models also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO2 concentration. These results indicate that model predictive ability of the C cycle in permafrost regions can be improved by better representation of the processes controlling CUE and GPPmax as well as their sensitivity to climate change.
  •  
16.
  • Andrews, Jennifer E., et al. (författare)
  • SN 2017gmr : An Energetic Type II-P Supernova with Asymmetries
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 885:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-cadence UV, optical, and near-infrared data on the luminous Type II-P supernova SN;2017gmr from hours after discovery through the first 180 days. SN;2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical light-curve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early light curve indicates a ?500 R progenitor radius, consistent with a rather compact red supergiant, and late-time luminosities indicate that up to 0.130;;0.026 M of Ni-56 are present, if the light curve is solely powered by radioactive decay, although the Ni-56 mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multipeaked emission lines of H? and [O i] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first 2 days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta.
  •  
17.
  • Chen, Lan, et al. (författare)
  • A modified ionization difference UV-vis method for fast quantitation of guaiacyl-type phenolic hydroxyl groups in lignin
  • 2022
  • Ingår i: International Journal of Biological Macromolecules. - : Elsevier BV. - 0141-8130 .- 1879-0003. ; 201, s. 330-337
  • Tidskriftsartikel (refereegranskat)abstract
    • An ionization difference UV-Vis method (Delta epsilon-spectrum method) is the most potentially simple method for fast quantitation of phenolic hydroxyl groups (ph-OH) in lignin. However, the underestimated results were calculated from the conventional Delta epsilon-spectrum method using one- or two-point wavelengths measurement. In this study, a modified Delta epsilon-spectrum method using multi-point wavelengths measurement was developed and the negative absorbance was also considered. Four main typical lignin models, e.g. vanilla alcohol, 5-5 biphenyl, stilbenoid and vanillin, were applied as the guaiacyl-type (G-type) phenolic models for the determination of ph-OH by the modified Delta epsilon-spectrum method. The 2-methoxyethanol/water/acetic acid = 8/2/0.2 (V/V/V) was used as the acidic solvent system and the 2-methoxyethanol/0.2 M NaOH solution = 1/9 (V/V) was used as the alkaline solvent system. The ph-OH contents in the spruce milled wood lignin (SMWL) and the spruce Kraft lignin (SKL) were respectively quantified by the modified Delta epsilon-spectrum method as 1.078 and 4.348 mmol/g, which were comparable to the counterparts determined by P-31 Nuclear Magnetic Resonance Spectroscopy (P-31 NMR). The results revealed that the modified Delta epsilon-spectrum method can provide more accurate and reliable results compared to the conventional method.
  •  
18.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
19.
  • Hedman, Åsa K., et al. (författare)
  • Epigenetic Patterns in Blood Associated With Lipid Traits Predict Incident Coronary Heart Disease Events and Are Enriched for Results From Genome-Wide Association Studies
  • 2017
  • Ingår i: Circulation. - : LIPPINCOTT WILLIAMS & WILKINS. - 1942-325X .- 1942-3268. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background- Genome-wide association studies have identified loci influencing circulating lipid concentrations in humans; further information on novel contributing genes, pathways, and biology may be gained through studies of epigenetic modifications. Methods and Results- To identify epigenetic changes associated with lipid concentrations, we assayed genome-wide DNA methylation at cytosine-guanine dinucleotides (CpGs) in whole blood from 2306 individuals from 2 population-based cohorts, with replication of findings in 2025 additional individuals. We identified 193 CpGs associated with lipid levels in the discovery stage (P < 1.08E-07) and replicated 33 (at Bonferroni-corrected P < 0.05), including 25 novel CpGs not previously associated with lipids. Genes at lipid-associated CpGs were enriched in lipid and amino acid metabolism processes. A differentially methylated locus associated with triglyceridesand high-density lipoprotein cholesterol (HDL- C; cg27243685; P= 8.1E-26 and 9.3E-19) was associated with cis-expression of a reverse cholesterol transporter (ABCG1; P= 7.2E-28) and incident cardiovascular disease events (hazard ratio per SD increment, 1.38; 95% confidence interval, 1.15-1.66; P= 0.0007). We found significant cis-methylation quantitative trait loci at 64% of the 193 CpGs with an enrichment of signals from genome-wide association studies of lipid levels (P-TC = 0.004, PHDL-C = 0.008 and P-triglycerides = 0.00003) and coronary heart disease ( P= 0.0007). For example, genome-wide significant variants associated with low-density lipoprotein cholesterol and coronary heart disease at APOB were cis-methylation quantitative trait loci for a low-density lipoprotein cholesterol-related differentially methylated locus. Conclusions-We report novel associations of DNA methylation with lipid levels, describe epigenetic mechanisms related to previous genome-wide association studies discoveries, and provide evidence implicating epigenetic regulation of reverse cholesterol transport in blood in relation to occurrence of cardiovascular disease events.
  •  
20.
  • Hou, Jianshen, et al. (författare)
  • Rewiring carbon flux in Escherichia coli using a bifunctional molecular switch
  • 2020
  • Ingår i: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 61, s. 47-57
  • Tidskriftsartikel (refereegranskat)abstract
    • The unbalanced distribution of carbon flux in microbial cell factories can lead to inefficient production and poor cell growth. Uncoupling cell growth and chemical synthesis can therefore improve microbial cell factory efficiency. Such uncoupling, which requires precise manipulation of carbon fluxes, can be achieved by up-regulating or down-regulating the expression of enzymes of various pathways. In this study, a dynamic turn-off switch (dTFS) and a dynamic turn-on switch (dTNS) were constructed using growth phase-dependent promoters and degrons. By combining the dTFS and dTNS, a bifunctional molecular switch that could orthogonally regulate two target proteins was introduced. This bifunctional molecular switch was used to uncouple cell growth from shikimic acid and D-glucaric acid synthesis, resulting in the production of 14.33 g/L shikimic acid and the highest reported productivity of D-glucaric acid (0.0325 g/L/h) in Escherichia coli MG1655. This proved that the bifunctional molecular switch could rewire carbon fluxes by controlling target protein abundance.
  •  
21.
  • Huan, Tianxiao, et al. (författare)
  • Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying methylation quantitative trait loci (meQTLs) and integrating them with disease-associated variants from genome-wide association studies (GWAS) may illuminate functional mechanisms underlying genetic variant-disease associations. Here, we perform GWAS of >415 thousand CpG methylation sites in whole blood from 4170 individuals and map 4.7 million cis- and 630 thousand trans-meQTL variants targeting >120 thousand CpGs. Independent replication is performed in 1347 participants from two studies. By linking cis-meQTL variants with GWAS results for cardiovascular disease (CVD) traits, we identify 92 putatively causal CpGs for CVD traits by Mendelian randomization analysis. Further integrating gene expression data reveals evidence of cis CpG-transcript pairs causally linked to CVD. In addition, we identify 22 trans-meQTL hotspots each targeting more than 30 CpGs and find that trans-meQTL hotspots appear to act in cis on expression of nearby transcriptional regulatory genes. Our findings provide a powerful meQTL resource and shed light on DNA methylation involvement in human diseases.
  •  
22.
  • Huang, Kun, et al. (författare)
  • Enhanced peak growth of global vegetation and its key mechanisms
  • 2018
  • Ingår i: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:12, s. 1897-1905
  • Tidskriftsartikel (refereegranskat)abstract
    • The annual peak growth of vegetation is critical in characterizing the capacity of terrestrial ecosystem productivity and shaping the seasonality of atmospheric CO2 concentrations. The recent greening of global lands suggests an increasing trend of terrestrial vegetation growth, but whether or not the peak growth has been globally enhanced still remains unclear. Here, we use two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in annual peak vegetation growth (that is, GPPmax and NDVImax). We demonstrate that the peak in the growth of global vegetation has been linearly increasing during the past three decades. About 65% of the NDVImax variation is evenly explained by expanding croplands (21%), rising CO2 (22%) and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend is substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrate that croplands have a higher photosynthetic capacity than other vegetation types. The large contribution of CO2 is also supported by a meta-analysis of 466 manipulative experiments and 15 terrestrial biosphere models. Furthermore, we show that the contribution of GPPmax to the change in annual GPP is less in the tropics than in other regions. These multiple lines of evidence reveal an increasing trend in the peak growth of global vegetation. The findings highlight the important roles of agricultural intensification and atmospheric changes in reshaping the seasonality of global vegetation growth.
  •  
23.
  • Keyu, Guo, et al. (författare)
  • A Phase-Domain Model of Dual Three-Phase Segmented Powered Linear PMSM for Hardware-assisted Real-Time Simulation
  • 2022
  • Ingår i: IEEE Transactions on Industry Applications. - 0093-9994 .- 1939-9367. ; 58:4, s. 4511-4521
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, a Hardware-assisted real-time simulation phase-domain (PD) model of a dual three-phase segmented powered linear permanent magnet synchronous machine (SP-LPMSM) used in electromagnetic launch is established. The model is able to consider the end-effect, saturation effect, coupling effect and open-phase fault conditions, which are specially occurs in the segmented structure in SP-LPMSM. The unbalanced inductances and saturation effect caused by the segmented structure are investigated and a simplified look-up table for inductances is introduced. Additionally, to accurately evaluate the coupling effect, the permanent magnet (PM) flux linkage is decoupled into the product of unit PM flux linkage and coupling coefficient. In order to avoid the numerical impulse caused by the derivative in the progress of calculating back-EMF, sigmoid function is adopted to express the coupling coefficient. Meanwhile, to make the PD-model compatible with the open-circuit fault conditions, incidence matrices and current constraint matrices are introduced to unify the PD-models with different winding connection types and open circuit faults into one general form. The PD-Model realized in Field-Programmable Gate Arrays (FPGA) based hardware is validated in comparison with finite element analysis results.
  •  
24.
  • Lango Allen, Hana, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
25.
  • Li, Danqin, et al. (författare)
  • n-Doping of photoactive layer in binary organic solar cells realizes over 18.3% efficiency
  • 2022
  • Ingår i: Nano Energy. - : ELSEVIER. - 2211-2855 .- 2211-3282. ; 96
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic doping of conjugated semiconductor plays a critical role in the fabrication of high efficiency organic optoelectronic devices. Here, we report an organic solar cell (OSC) by doping n-type DMBI-BDZC into one host binary bulk heterojunction (BHJ) photoactive layer comprised of a polymer donor PM6 and a nonfullerene acceptor Y6. The resulting champion device yields a significantly improved power conversion efficiency from 17.17% to 18.33% with an impressive fill factor of 80.20%. It is found that the electrically doped photoactive layer exhibits enhanced and balanced charge carrier mobilities, more effective exciton dissociation, longer carrier lifetime, and suppressed charge recombination with smaller energy loss. The dopant molecule DMBIBDZC also act as a surface morphology modifier of the photoactive layer with enhanced charge transport. This work demonstrates that manipulation of charge transport via adding a low concentration dopant into photoactive layer is a promising approach for further improvement of BHJ OSC performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 48
Typ av publikation
tidskriftsartikel (45)
forskningsöversikt (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (47)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Gieger, Christian (14)
Loos, Ruth J F (13)
Liang, Liming (13)
Salomaa, Veikko (12)
Lind, Lars (12)
Deloukas, Panos (12)
visa fler...
Wareham, Nicholas J. (12)
Mohlke, Karen L (12)
Lindgren, Cecilia M. (12)
Boehnke, Michael (11)
Metspalu, Andres (11)
McCarthy, Mark I (10)
Qi, Lu (10)
Tuomilehto, Jaakko (10)
Stefansson, Kari (10)
Peters, Annette (10)
Hattersley, Andrew T (10)
Wood, Andrew R (10)
Frayling, Timothy M (10)
Esko, Tõnu (10)
Groop, Leif (9)
Langenberg, Claudia (9)
Ingelsson, Erik (9)
Thorleifsson, Gudmar (9)
Thorsteinsdottir, Un ... (9)
Barroso, Ines (9)
Mahajan, Anubha (9)
Gustafsson, Stefan (9)
Illig, Thomas (9)
Prokopenko, Inga (9)
Ferreira, Teresa (9)
Jackson, Anne U. (9)
Collins, Francis S. (9)
Melander, Olle (8)
Kuusisto, Johanna (8)
Laakso, Markku (8)
Pedersen, Oluf (8)
Hansen, Torben (8)
Hu, Frank B. (8)
Scott, Robert A (8)
Mangino, Massimo (8)
Froguel, Philippe (8)
Luan, Jian'an (8)
Meitinger, Thomas (8)
Hayward, Caroline (8)
Zeggini, Eleftheria (8)
Boerwinkle, Eric (8)
Chines, Peter S. (8)
Grallert, Harald (8)
Mihailov, Evelin (8)
visa färre...
Lärosäte
Uppsala universitet (24)
Lunds universitet (17)
Karolinska Institutet (14)
Umeå universitet (9)
Göteborgs universitet (8)
Stockholms universitet (7)
visa fler...
Chalmers tekniska högskola (7)
Linköpings universitet (5)
Kungliga Tekniska Högskolan (3)
Högskolan Dalarna (2)
Högskolan i Halmstad (1)
visa färre...
Språk
Engelska (48)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (26)
Naturvetenskap (20)
Teknik (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy