SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Christophersen B) "

Search: WFRF:(Christophersen B)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Pulit, S. L., et al. (author)
  • Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
  • 2018
  • In: Neurology-Genetics. - : Ovid Technologies (Wolters Kluwer Health). - 2376-7839. ; 4:6
  • Journal article (peer-reviewed)abstract
    • Objective We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 x 10(-4) in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 x 10(-48)), explaining similar to 20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07,p = 0.004), but no other primary stroke subtypes (all p > 0.1). Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.
  •  
3.
  • Franceschini, N., et al. (author)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans. © 2018, The Author(s).
  •  
4.
  • Roselli, Carolina, et al. (author)
  • Multi-ethnic genome-wide association study for atrial fibrillation
  • 2018
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:9, s. 1225-1233
  • Journal article (peer-reviewed)abstract
    • Atrial fibrillation (AF) affects more than 33 million individuals worldwide(1) and has a complex heritability(2). We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Seifert, Mariam B., et al. (author)
  • Genetic variants on chromosomes 7p31 and 12p12 are associated with abnormal atrial electrical activation in patients with early-onset lone atrial fibrillation
  • 2019
  • In: Annals of Noninvasive Electrocardiology. - : Wiley. - 1082-720X .- 1542-474X. ; 24:6
  • Journal article (peer-reviewed)abstract
    • Background: Abnormal P-wave morphology (PWM) has been associated with a history of atrial fibrillation (AF) in earlier studies. Although lone AF is believed to have substantial genetic basis, studies on associations between single nucleotide polymorphisms (SNP) linked to lone AF and PWM have not been reported. We aimed to assess whether SNPs previously associated with lone AF (rs2200733, rs13376333, rs3807989, and rs11047543) are also linked to P-wave abnormalities. Methods: Four SNPs were studied in 176 unrelated individuals with early-onset lone AF (age at onset <50 years), median age 38 years (19–63 years), 149 men. Using sinus rhythm ECG, orthogonal PWM was classified as Type 1—positive in leads X and Y and negative in lead Z, Type 2—positive in leads X and Y and biphasic (−/+) in lead Z, Type 3—positive in lead X and biphasic in lead Y (+/−), and the remaining as atypical. Results: Two SNPs were found to be significantly associated with altered P-wave morphology distribution: rs3807989 near the gene CAV1/CAV2 and rs11047543 near the gene SOX5. Both SNPs were associated with a higher risk of non-Type 1 P-wave morphology (rs3807989: OR = 4.8, 95% CI = 2.3–10.2, p < 0.001; rs11047543: OR = 4.7, 95% CI = 1.1–20.5, p = 0.04). No association was observed for rs2200733 and rs13376333. Conclusion: In this study, the two variants rs3807989 and rs11047543, previously associated with PR interval and lone AF, were associated with altered P-wave morphology distribution in patients with early-onset lone AF. These findings suggest that common genetic variants may modify atrial conduction properties.
  •  
10.
  • Weng, Lu Chen, et al. (author)
  • Genetic Interactions with Age, Sex, Body Mass Index, and Hypertension in Relation to Atrial Fibrillation : The AFGen Consortium
  • 2017
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Journal article (peer-reviewed)abstract
    • It is unclear whether genetic markers interact with risk factors to influence atrial fibrillation (AF) risk. We performed genome-wide interaction analyses between genetic variants and age, sex, hypertension, and body mass index in the AFGen Consortium. Study-specific results were combined using meta-analysis (88,383 individuals of European descent, including 7,292 with AF). Variants with nominal interaction associations in the discovery analysis were tested for association in four independent studies (131,441 individuals, including 5,722 with AF). In the discovery analysis, the AF risk associated with the minor rs6817105 allele (at the PITX2 locus) was greater among subjects ≤ 65 years of age than among those > 65 years (interaction p-value = 4.0 × 10-5). The interaction p-value exceeded genome-wide significance in combined discovery and replication analyses (interaction p-value = 1.7 × 10-8). We observed one genome-wide significant interaction with body mass index and several suggestive interactions with age, sex, and body mass index in the discovery analysis. However, none was replicated in the independent sample. Our findings suggest that the pathogenesis of AF may differ according to age in individuals of European descent, but we did not observe evidence of statistically significant genetic interactions with sex, body mass index, or hypertension on AF risk.
  •  
11.
  • Gopalakrishnan, Shyam, et al. (author)
  • The population genomic legacy of the second plague pandemic
  • 2022
  • In: Current Biology. - : Elsevier. - 0960-9822 .- 1879-0445. ; 32:21, s. 4743-4751.e6
  • Journal article (peer-reviewed)abstract
    • Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%–40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th–19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.
  •  
12.
  • Nordstoga, K., et al. (author)
  • Pancreatitis in Hyperlipemic Mink (Mustela vison)
  • 2012
  • In: Veterinary pathology. - Thousand Oaks, CA : Sage Publications. - 0300-9858 .- 1544-2217. ; 49:3, s. 557-561
  • Journal article (peer-reviewed)abstract
    • In both man and animals, inflammatory changes in the pancreas often occur with disturbances in lipid metabolism, including hypertriglyceridemia and an excess of free fatty acids. Hyperlipoproteinemia type I is a human condition caused by a deficiency of lipoprotein lipase. A similar metabolic disturbance that occurs in mink is of considerable comparative interest, as it is also followed by pancreatitis. Pancreatic lesions in hyperlipoproteinemic mink included overt variably sized nodules with hemorrhage and necrosis. These lesions began as intralobular necrosis of exocrine cells and progressed to total lobular destruction, with eventual involvement of interlobular tissue. Remnants of epithelial cells and lipid-filled macrophages were seen in necrotic areas, along with other types of inflammatory cells scattered in a lipid-rich exudate. Granulation tissue developed rapidly in necrotic areas. Additional observations included ductal proliferation, replacement of epithelial cells with fat, and mural arterial thickening, most conspicuously with vacuolated cells and endothelial proliferation. Extravasation of lipid-rich plasma is thought to be a major intensifier of the inflammatory response.
  •  
13.
  • Savonen, R, et al. (author)
  • Chylomicron metabolism in an animal model for hyperlipoproteinemia type I.
  • 1999
  • In: Journal of Lipid Research. - 0022-2275 .- 1539-7262. ; 40:7, s. 1336-46
  • Journal article (peer-reviewed)abstract
    • Mink homozygous for the mutation Pro214Leu in lipoprotein lipase (LPL) had only traces of LPL activity but amounts of LPL protein in their tissues similar to those of normal mink. In normal mink, lymph chylomicrons from rats given [3H]retinol (incorporated into retinyl esters, providing a core label) and [14C]oleic acid (incorporated mainly in triglycerides (TG)) were rapidly cleared from the circulation. In the homozygous mink, clearance was much retarded. The ratio of TG to core label in plasma did not decrease and much less [14C]oleic acid appeared in plasma. Still, half of the labeled material disappeared from the circulating blood within 30;-40 min and the calculated total turnover of TG in the hypertriglyceridemic mink was almost as large as in normal mink. The core label was distributed to the same tissues in hypertriglyceridemic mink as in normal mink. Half to two-thirds of the cleared core label was in the liver. The large difference was that in the hypertriglyceridemic mink, TG label (about 40% of the total amount removed) followed the core label to the liver and there was no preferential uptake of TG over core label in adipose or muscle tissue. In normal mink, only small amounts of TG label (<10%) appeared in the liver, while most was in adipose and muscle tissues. Apolipoprotein B-48 dominated in the accumulated TG-rich lipoproteins in blood of hypertriglyceridemic mink, even in fasted animals.
  •  
14.
  • Schmidt, Amand F., et al. (author)
  • Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9
  • 2019
  • In: BMC Cardiovascular Disorders. - : BMC. - 1471-2261 .- 1471-2261. ; 19:1
  • Journal article (peer-reviewed)abstract
    • Background: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. Methods: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. Results: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer's disease - outcomes for which large-scale trial data were unavailable. Conclusions: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view