SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Colomban L.) "

Sökning: WFRF:(Colomban L.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bercic, L., et al. (författare)
  • Whistler instability driven by the sunward electron deficit in the solar wind High-cadence Solar Orbiter observations
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar wind electrons play an important role in the energy balance of the solar wind acceleration by carrying energy into interplanetary space in the form of electron heat flux. The heat flux is stored in the complex electron velocity distribution functions (VDFs) shaped by expansion, Coulomb collisions, and field-particle interactions. Aims. We investigate how the suprathermal electron deficit in the anti-strahl direction, which was recently discovered in the near-Sun solar wind, drives a kinetic instability and creates whistler waves with wave vectors that are quasi-parallel to the direction of the background magnetic field.Methods. We combined high-cadence measurements of electron pitch-angle distribution functions and electromagnetic waves provided by Solar Orbiter during its first orbit. Our case study is based on a burst-mode data interval from the Electrostatic Analyser System (SWA-EAS) at a distance of 112 R-S (0.52 au) from the Sun, during which several whistler wave packets were detected by Solar Orbiter's Radio and Plasma Waves (RPW) instrument.Results. The sunward deficit creates kinetic conditions under which the quasi-parallel whistler wave becomes unstable. We directly test our predictions for the existence of these waves through solar wind observations. We find whistler waves that are quasi-parallel and almost circularly polarised, propagating away from the Sun, coinciding with a pronounced sunward deficit in the electron VDF. The cyclotron-resonance condition is fulfilled for electrons moving in the direction opposite to the direction of wave propagation, with energies corresponding to those associated with the sunward deficit.Conclusions. We conclude that the sunward deficit acts as a source of quasi-parallel whistler waves in the solar wind. The quasilinear diffusion of the resonant electrons tends to fill the deficit, leading to a reduction in the total electron heat flux.
  •  
2.
  • Colomban, L., et al. (författare)
  • Quantifying the diffusion of suprathermal electrons by whistler waves between 0.2 and 1 AU with Solar Orbiter and Parker Solar Probe
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The evolution of the solar wind electron distribution function with heliocentric distance exhibits different features that are still unexplained, in particular, the fast decrease in the electron heat flux and the increase in the Strahl pitch angle width. Wave-particle interactions between electrons and whistler waves are often proposed to explain these phenomena.Aims. We aim to quantify the effect of whistler waves on suprathermal electrons as a function of heliocentric distance.Methods. We first performed a statistical analysis of whistler waves (occurrence and properties) observed by Solar Orbiter and Parker Solar Probe between 0.2 and 1 AU. The wave characteristics were then used to compute the diffusion coefficients for solar wind suprathermal electrons in the framework of quasi-linear theory. These coefficients were integrated to deduce the overall effect of whistler waves on electrons along their propagation.Results. About 110 000 whistler wave packets were detected and characterized in the plasma frame, including their direction of propagation with respect to the background magnetic field and their radial direction of propagation. Most waves are aligned with the magnetic field and only ∼0.5% of them have a propagation angle greater than 45°. Beyond 0.3 AU, it is almost exclusively quasi-parallel waves propagating anti-sunward (some of them are found sunward but are within switchbacks with a change of sign of the radial component of the background magnetic) that are observed. Thus, these waves are found to be Strahl-aligned and not counter-streaming. At 0.2 AU, we find both Strahl-aligned and counter-streaming quasi-parallel whistler waves.Conclusions. Beyond 0.3 AU, the integrated diffusion coefficients show that the observed waves are sufficient to explain the measured Strahl pitch angle evolution and effective in isotropizing the halo. Strahl diffusion is mainly attributed to whistler waves with a propagation angle of θ ∈ [15.45]°, although their origin has not yet been fully determined. Near 0.2 AU, counter-streaming whistler waves are able to diffuse the Strahl electrons more efficiently than the Strahl-aligned waves by two orders of magnitude.
  •  
3.
  • Kretzschmar, M., et al. (författare)
  • Whistler waves observed by Solar Orbiter/RPW between 0.5 AU and 1 AU
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar wind evolution differs from a simple radial expansion, while wave-particle interactions are assumed to be the major cause for the observed dynamics of the electron distribution function. In particular, whistler waves are thought to inhibit the electron heat flux and ensure the diffusion of the field-aligned energetic electrons (Strahl electrons) to replenish the halo population.Aims. The goal of our study is to detect and characterize the electromagnetic waves that have the capacity to modify the electron distribution functions, with a special focus on whistler waves.Methods. We carried out a detailed analysis of the electric and magnetic field fluctuations observed by the Solar Orbiter spacecraft during its first orbit around the Sun, between 0.5 and 1 AU. Using data from the Search Coil Magnetometer and electric antenna, both part of the Radio and Plasma Waves (RPW) instrumental suite, we detected the electromagnetic waves with frequencies above 3 Hz and determined the statistical distribution of their amplitudes, frequencies, polarization, and k-vector as a function of distance. Here, we also discuss the relevant instrumental issues regarding the phase between the electric and magnetic measurements as well as the effective length of the electric antenna.Results. An overwhelming majority of the observed waves are right-handed circularly polarized in the solar wind frame and identified as outwardly propagating quasi-parallel whistler waves. Their occurrence rate increases by a least a factor of 2 from 1 AU to 0.5 AU. These results are consistent with the regulation of the heat flux by the whistler heat flux instability. Near 0.5 AU, whistler waves are found to be more field-aligned and to have a smaller normalized frequency (f/f(ce)), larger amplitude, and greater bandwidth than at 1 AU.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy