SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Corstanje A.) "

Sökning: WFRF:(Corstanje A.)

  • Resultat 1-25 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Haarlem, M. P., et al. (författare)
  • LOFAR : The LOw-Frequency ARray
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 556, s. 1-53
  • Tidskriftsartikel (refereegranskat)abstract
    • LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10–240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR’s new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
  •  
2.
  • Stewart, A. J., et al. (författare)
  • LOFAR MSSS : detection of a low-frequency radio transient in 400 h of monitoring of the North Celestial Pole
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:3, s. 2321-2342
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a four-month campaign searching for low-frequency radio transients near the North Celestial Pole with the Low-Frequency Array (LOFAR), as part of the Multifrequency Snapshot Sky Survey (MSSS). The data were recorded between 2011 December and 2012 April and comprised 2149 11-min snapshots, each covering 175 deg2. We have found one convincing candidate astrophysical transient, with a duration of a few minutes and a flux density at 60 MHz of 15–25 Jy. The transient does not repeat and has no obvious optical or high-energy counterpart, as a result of which its nature is unclear. The detection of this event implies a transient rate at 60 MHz of 3.9−3.7+14.7×10−4" style="position: relative;" tabindex="0" id="MathJax-Element-1-Frame" class="MathJax">3.9+14.7−3.7×10−4 d−1 deg−2, and a transient surface density of 1.5 × 10−5 deg−2, at a 7.9-Jy limiting flux density and ∼10-min time-scale. The campaign data were also searched for transients at a range of other time-scales, from 0.5 to 297 min, which allowed us to place a range of limits on transient rates at 60 MHz as a function of observation duration.
  •  
3.
  • Sobey, C., et al. (författare)
  • LOFAR discovery of a quiet emission mode in PSR B0823+26
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 451, s. 2493-2506
  • Tidskriftsartikel (refereegranskat)abstract
    • PSR B0823+26, a 0.53-s radio pulsar, displays a host of emission phenomena over time-scales of seconds to (at least) hours, including nulling, subpulse drifting, and mode-changing. Studying pulsars like PSR B0823+26 provides further insight into the relationship between these various emission phenomena and what they might teach us about pulsar magnetospheres. Here we report on the LOFAR (Low-Frequency Array) discovery that PSR B0823+26 has a weak and sporadically emitting ‘quiet’ (Q) emission mode that is over 100 times weaker (on average) and has a nulling fraction forty-times greater than that of the more regularly-emitting ‘bright’ (B) mode. Previously, the pulsar has been undetected in the Q mode, and was assumed to be nulling continuously. PSR B0823+26 shows a further decrease in average flux just before the transition into the B mode, and perhaps truly turns off completely at these times. Furthermore, simultaneous observations taken with the LOFAR, Westerbork, Lovell, and Effelsberg telescopes between 110 MHz and 2.7 GHz demonstrate that the transition between the Q mode and B mode occurs within one single rotation of the neutron star, and that it is concurrent across the range of frequencies observed.
  •  
4.
  • Coenen, T., et al. (författare)
  • The LOFAR pilot surveys for pulsars and fast radio transients
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, the LOFAR Pilot Pulsar Survey (LPPS), observed a large fraction of the northern sky, ~ 1.4 × 104 deg2, with 1 h dwell times. Each observation covered ~75 deg2 using 7 independent fields formed by incoherently summing the high-band antenna fields. The second pilot survey, the LOFAR Tied-Array Survey (LOTAS), spanned ~600 deg2, with roughly a 5-fold increase in sensitivity compared with LPPS. Using a coherent sum of the 6 LOFAR “Superterp” stations, we formed 19 tied-array beams, together covering 4 deg2 per pointing. From LPPS we derive a limit on the occurrence, at 142 MHz, of dispersed radio bursts of < 150 day-1 sky-1, for bursts brighter than S> 107  Jy for the narrowest searched burst duration of 0.66 ms. In LPPS, we re-detected 65 previously known pulsars. LOTAS discovered two pulsars, the first with LOFAR or any digital aperture array. LOTAS also re-detected 27 previously known pulsars. These pilot studies show that LOFAR can efficiently carry out all-sky surveys for pulsars and fast transients, and they set the stage for further surveying efforts using LOFAR and the planned low-frequency component of the Square Kilometer Array.
  •  
5.
  • Oonk, J. B. R., et al. (författare)
  • Discovery of carbon radio recombination lines in absorption towards Cygnus A
  • 2014
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 437:4, s. 3506-3515
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33–57 MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse, neutral gas in our Galaxy. To our knowledge this is the first time that foreground Milky Way recombination line absorption has been observed against a bright extragalactic background source. By stacking 48 carbon α lines in the observed frequency range we detect carbon absorption with a signal-to-noise ratio of about 5. The average carbon absorption has a peak optical depth of 2 × 10−4, a line width of 10 km s−1 and a velocity of +4 km s−1 with respect to the local standard of rest. The associated gas is found to have an electron temperature Te ∼ 110 K and density ne ∼ 0.06 cm−3. These properties imply that the observed carbon α absorption likely arises in the cold neutral medium of the Orion arm of the Milky Way. Hydrogen and helium lines were not detected to a 3σ peak optical depth limit of 1.5 × 10−4 for a 4 km s−1 channel width. Radio recombination lines associated with Cygnus A itself were also searched for, but are not detected. We set a 3σ upper limit of 1.5 × 10−4 for the peak optical depth of these lines for a 4 km s−1 channel width.
  •  
6.
  • Buitink, S., et al. (författare)
  • A large light-mass component of cosmic rays at 1017–1017.5 electronvolts from radio observations
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 531:7592, s. 70-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 1017–1018 electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal1 comes from accelerators capable of producing cosmic rays of these energies2. Cosmic rays initiate air showers—cascades of secondary particles in the atmosphere—and their masses can be inferred from measurements of the atmospheric depth of the shower maximum3 (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground4. Current measurements5 have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays6, 7, 8 is a rapidly developing technique9 for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front6, 12. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 1017–1017.5 electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 1017.5 electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 1017–1017.5 electronvolt range.
  •  
7.
  • Orrù, E., et al. (författare)
  • Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620 : A fresh view on a restarted AGN and doubeltjes
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 584, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The existence of double-double radio galaxies (DDRGs) is evidence for recurrent jet activity in active galactic nuclei (AGN), as expected from standard accretion models. A detailed study of these rare sources provides new perspectives for investigating the AGN duty cycle, AGN-galaxy feedback, and accretion mechanisms. Large catalogues of radio sources, on the other hand, provide statistical information about the evolution of the radio-loud AGN population out to high redshifts.Aims. Using wide-field imaging with the LOFAR telescope, we study both a well-known DDRG as well as a large number of radio sources in the field of view.Methods. We present a high resolution image of the DDRG B1834+620 obtained at 144 MHz using LOFAR commissioning data. Our image covers about 100 square degrees and contains over 1000 sources.Results. The four components of the DDRG B1834+620 have been resolved for the first time at 144 MHz. Inner lobes were found to point towards the direction of the outer lobes, unlike standard FR II sources. Polarized emission was detected at +60 rad m-2 in the northern outer lobe. The high spatial resolution allows the identification of a large number of small double-lobed radio sources; roughly 10% of all sources in the field are doubles with a separation smaller than 1′.Conclusions. The spectral fit of the four components is consistent with a scenario in which the outer lobes are still active or the jets recently switched off, while emission of the inner lobes is the result of a mix-up of new and old jet activity. From the presence of the newly extended features in the inner lobes of the DDRG, we can infer that the mechanism responsible for their formation is the bow shock that is driven by the newly launched jet. We find that the density of the small doubles exceeds the density of FR II sources with similar properties at 1.4 GHz, but this difference becomes smaller for low flux densities. Finally, we show that the significant challenges of wide-field imaging (e.g., time and frequency variation of the beam, directional dependent calibration errors) can be solved using LOFAR commissioning data, thus demonstrating the potential of the full LOFAR telescope to discover millions of powerful AGN at redshift z ~ 1.
  •  
8.
  • Schellart, P., et al. (författare)
  • Detecting cosmic rays with the LOFAR radio telescope
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 560, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The low frequency array (LOFAR), is the first radio telescope designed with the capability to measure radio emission from cosmic-ray induced air showers in parallel with interferometric observations. In the first ~2 years of observing, 405 cosmic-ray events in the energy range of 1016−1018 eV have been detected in the band from 30−80 MHz. Each of these air showers is registered with up to ~1000 independent antennas resulting in measurements of the radio emission with unprecedented detail. This article describes the dataset, as well as the analysis pipeline, and serves as a reference for future papers based on these data. All steps necessary to achieve a full reconstruction of the electric field at every antenna position are explained, including removal of radio frequency interference, correcting for the antenna response and identification of the pulsed signal.
  •  
9.
  • Vedantham, H. K., et al. (författare)
  • Lunar occultation of the diffuse radio sky : LOFAR measurements between 35 and 80 MHz
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 450, s. 2291-2305
  • Tidskriftsartikel (refereegranskat)abstract
    • We present radio observations of the Moon between 35 and 80 MHz to demonstrate a novel technique of interferometrically measuring large-scale diffuse emission extending far beyond the primary beam (global signal) for the first time. In particular, we show that (i) the Moon appears as a negative-flux source at frequencies 35 < ν < 80 MHz since it is ‘colder’ than the diffuse Galactic background it occults, (ii) using the (negative) flux of the lunar disc, we can reconstruct the spectrum of the diffuse Galactic emission with the lunar thermal emission as a reference, and (iii) that reflected RFI (radio-frequency interference) is concentrated at the centre of the lunar disc due to specular nature of reflection, and can be independently measured. Our RFI measurements show that (i) Moon-based Cosmic Dawn experiments must design for an Earth-isolation of better than 80 dB to achieve an RFI temperature <1 mK, (ii) Moon-reflected RFI contributes to a dipole temperature less than 20 mK for Earth-based Cosmic Dawn experiments, (iii) man-made satellite-reflected RFI temperature exceeds 20 mK if the aggregate scattering cross-section of visible satellites exceeds 175 m2 at 800 km height, or 15 m2 at 400 km height. Currently, our diffuse background spectrum is limited by sidelobe confusion on short baselines (10–15 per cent level). Further refinement of our technique may yield constraints on the redshifted global 21 cm signal from Cosmic Dawn (40 > z > 12) and the Epoch of Reionization (12 > z > 5).
  •  
10.
  • Jackson, N., et al. (författare)
  • LBCS: The LOFAR Long-Baseline Calibrator Survey
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595, s. Art no A86-
  • Tidskriftsartikel (refereegranskat)abstract
    • We outline the LOFAR Long-Baseline Calibrator Survey (LBCS), whose aim is to identify sources suitable for calibrating the highest-resolution observations made with the International LOFAR Telescope, which include baselines > 1000 km. Suitable sources must contain significant correlated flux density (greater than or similar to 50 - 100 mJy) at frequencies around 110-190 MHz on scales of a few hundred milliarcseconds. At least for the 200-300-km international baselines, we find around 1 suitable calibrator source per square degree over a large part of the northern sky, in agreement with previous work. This should allow a randomly selected target to be successfully phase calibrated on the international baselines in over 50% of cases. Products of the survey include calibrator source lists and fringe-rate and delay maps of wide areas-typically a few degrees-around each source. The density of sources with significant correlated flux declines noticeably with baseline length over the range 200-600 km, with good calibrators on the longest baselines appearing only at the rate of 0.5 per sq. deg. Coherence times decrease from 1-3 min on 200-km baselines to about 1 min on 600-km baselines, suggesting that ionospheric phase variations contain components with scales of a few hundred kilometres. The longest median coherence time, at just over 3 min, is seen on the DE609 baseline, which at 227 km is close to being the shortest. We see median coherence times of between 80 and 110 s on the four longest baselines (580-600 km), and about 2 min for the other baselines. The success of phase transfer from calibrator to target is shown to be influenced by distance, in a manner that suggests a coherence patch at 150-MHz of the order of 1 deg. Although source structures cannot be measured in these observations, we deduce that phase transfer is affected if the calibrator source structure is not known. We give suggestions for calibration strategies and choice of calibrator sources, and describe the access to the online catalogue and data products.
  •  
11.
  • Morabito, L., et al. (författare)
  • Sub-arcsecond imaging with the International LOFAR Telescope: I. Foundational calibration strategy and pipeline
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • The International LOFAR Telescope is an interferometer with stations spread across Europe. With baselines of up to ∼2000 km, LOFAR has the unique capability of achieving sub-arcsecond resolution at frequencies below 200 MHz. However, it is technically and logistically challenging to process LOFAR data at this resolution. To date only a handful of publications have exploited this capability. Here we present a calibration strategy that builds on previous high-resolution work with LOFAR. It is implemented in a pipeline using mostly dedicated LOFAR software tools and the same processing framework as the LOFAR Two-metre Sky Survey (LoTSS). We give an overview of the calibration strategy and discuss the special challenges inherent to enacting high-resolution imaging with LOFAR, and describe the pipeline, which is publicly available, in detail. We demonstrate the calibration strategy by using the pipeline on P205+55, a typical LoTSS pointing with an 8 h observation and 13 international stations. We perform in-field delay calibration, solution referencing to other calibrators in the field, self-calibration of these calibrators, and imaging of example directions of interest in the field. We find that for this specific field and these ionospheric conditions, dispersive delay solutions can be transferred between calibrators up to ∼1.5° away, while phase solution transferral works well over ∼1°. We also demonstrate a check of the astrometry and flux density scale with the in-field delay calibrator source. Imaging in 17 directions, we find the restoring beam is typically ∼0.3″ ×0.2″ although this varies slightly over the entire 5 deg2 field of view. We find we can achieve ∼80-300 μJy bm-1 image rms noise, which is dependent on the distance from the phase centre; typical values are ∼90 μJy bm-1 for the 8 h observation with 48 MHz of bandwidth. Seventy percent of processed sources are detected, and from this we estimate that we should be able to image roughly 900 sources per LoTSS pointing. This equates to ∼ 3 million sources in the northern sky, which LoTSS will entirely cover in the next several years. Future optimisation of the calibration strategy for efficient post-processing of LoTSS at high resolution makes this estimate a lower limit.
  •  
12.
  • Corstanje, A., et al. (författare)
  • The shape of the radio wavefront of extensive air showers as measured with LOFAR
  • 2015
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 61, s. 22-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameterization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.
  •  
13.
  • Nelles, A., et al. (författare)
  • Measuring a Cherenkov ring in the radio emission from air showers at 110-190 MHz with LOFAR
  • 2015
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 65, s. 11-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring radio emission from air showers offers a novel way to determine properties of the primary cosmic rays such as their mass and energy. Theory predicts that relativistic time compression effects lead to a ring of amplified emission which starts to dominate the emission pattern for frequencies above ∼100∼100 MHz. In this article we present the first detailed measurements of this structure. Ring structures in the radio emission of air showers are measured with the LOFAR radio telescope in the frequency range of 110–190 MHz. These data are well described by CoREAS simulations. They clearly confirm the importance of including the index of refraction of air as a function of height. Furthermore, the presence of the Cherenkov ring offers the possibility for a geometrical measurement of the depth of shower maximum, which in turn depends on the mass of the primary particle.
  •  
14.
  • Girard, J. N., et al. (författare)
  • Imaging Jupiter’s radiation belts down to 127 MHz with LOFAR
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. With the limited amount of in situ particle data available for the innermost region of Jupiter’s magnetosphere, Earth-based observations of the giant planets synchrotron emission remain the sole method today of scrutinizing the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet. Radio observations ultimately provide key information about the origin and control parameters of the harsh radiation environment.Aims. We perform the first resolved and low-frequency imaging of the synchrotron emission with LOFAR. At a frequency as low as 127 MHz, the radiation from electrons with energies of ~1–30 MeV are expected, for the first time, to be measured and mapped over a broad region of Jupiter’s inner magnetosphere.Methods. Measurements consist of interferometric visibilities taken during a single 10-hour rotation of the Jovian system. These visibilities were processed in a custom pipeline developed for planetary observations, combining flagging, calibration, wide-field imaging, direction-dependent calibration, and specific visibility correction for planetary targets. We produced spectral image cubes of Jupiter’s radiation belts at the various angular, temporal, and spectral resolutions from which flux densities were measured.Results. The first resolved images of Jupiter’s radiation belts at 127–172 MHz are obtained with a noise level ~20–25 mJy/beam, along with total integrated flux densities. They are compared with previous observations at higher frequencies. A greater extent of the synchrotron emission source (≥4 RJ) is measured in the LOFAR range, which is the signature – as at higher frequencies – of the superposition of a “pancake” and an isotropic electron distribution. Asymmetry of east-west emission peaks is measured, as well as the longitudinal dependence of the radial distance of the belts, and the presence of a hot spot at λIII = 230° ± 25°. Spectral flux density measurements are on the low side of previous (unresolved) ones, suggesting a low-frequency turnover and/or time variations of the Jovian synchrotron spectrum.Conclusions. LOFAR proves to be a powerful and flexible planetary imager. In the case of Jupiter, observations at 127 MHz depict the distribution of ~1–30 MeV energy electrons up to ~4–5 planetary radii. The similarities of the observations at 127 MHz with those at higher frequencies reinforce the conclusion that the magnetic field morphology primarily shapes the brightness distribution features of Jupiter’s synchrotron emission, as well as how the radiating electrons are likely radially and latitudinally distributed inside about 2 planetary radii. Nonetheless, the detection of an emission region that extends to larger distances than at higher frequencies, combined with the overall lower flux density, yields new information on Jupiter’s electron distribution, and this information may ultimately shed light on the origin and mode of transport of these particles.
  •  
15.
  • Nelles, A., et al. (författare)
  • Calibrating the absolute amplitude scale for air showers measured at LOFAR
  • 2015
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR.
  •  
16.
  • Schellart, P., et al. (författare)
  • Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers
  • 2015
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 114:16, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.
  •  
17.
  • Rossetto, L., et al. (författare)
  • Characterisation of the radio frequency spectrum emitted by high energy air showers with LOFAR
  • 2018
  • Ingår i: 35th International Cosmic Ray Conference, ICRC2017. - Trieste : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The high number density of radio antennas at the LOFAR core in Northern Netherlands allows to detect radio signals emitted by extensive air showers in the energy range 1016 - 1018 e V, and to characterise the geometry of the observed cascade in a detailed way. The radio signal emitted by extensive air showers along their propagation in the atmosphere has been studied in the 30 - 70 MHz frequency range. The study has been conducted on real data and simulated showers. Regarding real data, cosmic ray radio signals detected by LOFAR since 2011 have been analysed. For simulated showers, the CoREAS code, a plug-in of the CORSIKA particle simulation code, has been used. The results show a clear dependence of the frequency spectrum on the distance to the shower axis for both real data and simulations. In particular, the spectrum flatten at a distance around 100 m from the shower axis, where the coherence of the radio signal is maximum. This behaviour could also be used to reconstruct the position of the shower axis at ground. A correlation between the frequency spectrum and the geometrical distance to the depth of the shower maximum Xmax has also been investigated. The final aim of this study is to find a method to improve the inferred information of primary cosmic rays with radio antennas, in view of affirming the radio detection technique as reliable method for the study of extensive air showers. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
18.
  • Bonardi, A., et al. (författare)
  • Study of the LOFAR radio self-trigger and single-station acquisition mode
  • 2018
  • Ingår i: 35th International Cosmic Ray Conference, ICRC 2017, 10-20 July 2017. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The LOw Frequency ARay (LOFAR) observatory is a multipurpose radio antenna array aimed to detect radio signals in the frequency range 10-240 MHz. Radio antennas are clustered into over 50 stations, and are spread along Central and Northern Europe. The LOFAR core, where the density of stations is highest, is instrumented with the LOfar Radboud air shower Array (LORA), covering an area of about 300 m diameter centered at the LOFAR core position. Since 2011 the LOFAR core has been used for detecting radio-signals associated to cosmic-ray air showers in the energy range 1016 - 1018 eV. Data acquisition is triggered by the LORA scintillator array, which provides energy, arrival direction, and core position estimates of the detected air shower too. Thus only the core of the LOFAR array is currently used for cosmic-ray detection. In order to extend the energy range of the detected cosmic rays, it is necessary to expand the effective collecting area to the whole LOFAR array. On this purpose, a detailed study about the LOFAR potentialities of working in self-trigger mode, i.e. with the cosmic-ray data acquisition trigger provided by the radio-antenna only, is presented here. A new method based on the intensity and the frequency spectrum for determining the air shower position to be implemented on LOFAR remote stations is presented too. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
19.
  • Buitink, S., et al. (författare)
  • Cosmic ray mass composition with LOFAR
  • 2018
  • Ingår i: 35th International Cosmic Ray Conference — ICRC2017. 10–20 July, 2017. Bexco, Busan, Korea. - Trieste, Italy : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The LOFAR radio telescope measures the radio emission from extensive air showers with unprecedented precision. In the dense core individual air showers are detected by hundreds of dipole antennas. By fitting the complex radiation pattern to Monte Carlo radio simulation codes we obtain measurements of the atmospheric depth of the shower maximum X max with a precision of < 20 g/cm 2 . This quantity is sensitive to the mass composition of cosmic rays. We discuss the first mass composition results of LOFAR and the improvements that are currently being made to enhance the accuracy of future analysis. Firstly, a more realistic treatment of the atmosphere will decrease the systematic uncertainties due to the atmosphere. Secondly, a series of upgrades to the LOFAR system will lead to increased effective area, duty cycle, and the possibility to extend the composition analysis down to the energy of 10 16.5 eV. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
20.
  • Corstanje, A., et al. (författare)
  • LOFAR : Detecting Cosmic Rays with a Radio Telescope
  • 2011
  • Ingår i: Proceedings of the 32nd International Cosmic Ray Conference. - : International Union of Pure and Applied Physics (IUPAP). ; , s. 192-195
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • LOFAR (the Low Frequency Array), a distributed digital radio telescope with stations in the Netherlands, Germany, France, Sweden, and the United Kingdom, is designed to enable full-sky monitoring of transient radio sources. These capabilities are ideal for the detection of broadband radio pulses generated in cosmic ray air showers. The core of LOFAR consists of 24 stations within 4 square kilometers, and each station contains 96 low-band antennas and 48 high-band antennas. This dense instrumentation will allow detailed studies of the lateral distribution of the radio signal in a frequency range of 10-250 MHz. Such studies are key to understanding the various radio emission mechanisms within the air shower, as well as for determining the potential of the radio technique for primary particle identification. We present the status of the LOFAR cosmic ray program, including the station design and hardware, the triggering and filtering schemes, and our initial observations of cosmic-ray-induced radio pulses.
  •  
21.
  • Corstanje, A., et al. (författare)
  • The effect of the atmospheric refractive index on the radio signal of extensive air showers
  • 2017
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 89, s. 23-29
  • Tidskriftsartikel (refereegranskat)abstract
    • For the interpretation of measurements of radio emission from extensive air showers, an important systematic uncertainty arises from natural variations of the atmospheric refractive index n. At a given altitude, the refractivity N = 10(6) (n - 1) can have relative variations on the order of 10% depending on temperature, humidity, and air pressure. Typical corrections to be applied to N are about 4%. Using CoREAS simulations of radio emission from air showers, we have evaluated the effect of varying N on measurements of the depth of shower maximum X-max. For an observation band of 30-80 MHz, a difference of 4% in refractivity gives rise to a systematic error in the inferred X-max between 3.5 and 11 g/cm(2), for proton showers with zenith angles ranging from 15 to 50 degrees. At higher frequencies, from 120 to 250 MHz, the offset ranges from 10 to 22 g/cm(2). These offsets were found to be proportional to the geometric distance to X-max. We have compared the results to a simple model based on the Cherenkov angle. For the 120-250 MHz band, the model is in qualitative agreement with the simulations. In typical circumstances, we find a slight decrease in X-max compared to the default refractivity treatment in CoREAS. While this is within commonly treated systematic uncertainties, accounting for it explicitly improves the accuracy of X-max measurements. (C) 2017 Elsevier B.V. All rights reserved.
  •  
22.
  • Corstanje, A., et al. (författare)
  • The effect of the atmospheric refractive index on the radio signal of extensive air showers using Global Data Assimilation System (GDAS)
  • 2018
  • Ingår i: 35th International Cosmic Ray Conference, ICRC 2017, 10-20 July 2017, Bexco, Busan, Korea. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • One of the major systematic uncertainties in the measurement of Xmax from radio emission of EAS arises from variations of the refractive index in the atmosphere. The refractive index n varies with temperature, humidity and pressure, and the variations can be on the order of 10% for (n-1) at a given altitude. The effect of a varying refractive index on Xmax measurements is evaluated using CoREAS: a microscopic simulation of the radio emission from the individual particles in the cascade simulated with CORSIKA. We discuss the resulting offsets in Xmax for different frequency regimes, and compare them to a simple physical model. Under typical circumstances, the offsets in Xmax range from 4-11 g/cm2 for the 30-80 MHz frequency band. Therefore, for precise measurements it is required to include atmospheric data at the time and place of observation of the air shower into the simulations. The aim is to implement this in the next version of CoREAS/CORSIKA using the Global Data Assimilation System (GDAS), a global atmospheric model based on meteorological measurements and numerical weather predictions. This can then be used to re-evaluate the air shower measurements of the LOFAR radio telescope. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
23.
  • Hare, B. M., et al. (författare)
  • LOFAR Lightning Imaging : Mapping Lightning With Nanosecond Precision
  • 2018
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 123:5, s. 2861-2876
  • Tidskriftsartikel (refereegranskat)abstract
    • Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20km outside the area enclosed by LOFAR antennas (approximate to 3,200km(2)), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.
  •  
24.
  • Horandel, Jorg R., et al. (författare)
  • The mass composition of cosmic rays measured with LOFAR
  • 2017
  • Ingår i: RICAP16, 6TH ROMA INTERNATIONAL CONFERENCE ON ASTROPARTICLE PHYSICS. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • High-energy cosmic rays, impinging on the atmosphere of the Earth initiate cascades of secondary particles, the extensive air showers. The electrons and positrons in the air shower emit electromagnetic radiation. This emission is detected with the LOFAR radio telescope in the frequency range from 30 to 240 MHz. The data are used to determine the properties of the incoming cosmic rays. The radio technique is now routinely used to measure the arrival direction, the energy, and the particle type (atomic mass) of cosmic rays in the energy range from 10(17) to 10(18) eV. This energy region is of particular astrophysical interest, since in this regime a transition from a Galactic to an extra-galactic origin of cosmic rays is expected. For illustration, the LOFAR results are used to set constraints on models to describe the origin of high-energy cosmic rays.
  •  
25.
  • Mulrey, K., et al. (författare)
  • Calibration of the LOFAR low-band antennas using the Galaxy and a model of the signal chain
  • 2019
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The LOw-Frequency ARray (LOFAR) is used to make precise measurements of radio emission from extensive air showers, yielding information about the primary cosmic ray. Interpreting the measured data requires an absolute and frequency-dependent calibration of the LOFAR system response. This is particularly important for spectral analyses, because the shape of the detected signal holds information about the shower development. We revisit the calibration of the LOFAR antennas in the range of 30-80 MHz. Using the Galactic emission and a detailed model of the LOFAR signal chain, we find an improved calibration that provides an absolute energy scale and allows for the study of frequency dependent features in measured signals. With the new calibration, systematic uncertainties of 13% are reached, and comparisons of the spectral shape of calibrated data with simulations show promising agreement. (C) 2019 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 47

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy