SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Coscia A) "

Sökning: WFRF:(Coscia A)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Chatzikonstantinou, T, et al. (författare)
  • COVID-19 severity and mortality in patients with CLL: an update of the international ERIC and Campus CLL study
  • 2021
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 35:12, s. 3444-3454
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with chronic lymphocytic leukemia (CLL) may be more susceptible to Coronavirus disease 2019 (COVID-19) due to age, disease, and treatment-related immunosuppression. We aimed to assess risk factors of outcome and elucidate the impact of CLL-directed treatments on the course of COVID-19. We conducted a retrospective, international study, collectively including 941 patients with CLL and confirmed COVID-19. Data from the beginning of the pandemic until March 16, 2021, were collected from 91 centers. The risk factors of case fatality rate (CFR), disease severity, and overall survival (OS) were investigated. OS analysis was restricted to patients with severe COVID-19 (definition: hospitalization with need of oxygen or admission into an intensive care unit). CFR in patients with severe COVID-19 was 38.4%. OS was inferior for patients in all treatment categories compared to untreated (p < 0.001). Untreated patients had a lower risk of death (HR = 0.54, 95% CI:0.41–0.72). The risk of death was higher for older patients and those suffering from cardiac failure (HR = 1.03, 95% CI:1.02–1.04; HR = 1.79, 95% CI:1.04–3.07, respectively). Age, CLL-directed treatment, and cardiac failure were significant risk factors of OS. Untreated patients had a better chance of survival than those on treatment or recently treated.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Molina-Montes, E, et al. (författare)
  • Deciphering the complex interplay between pancreatic cancer, diabetes mellitus subtypes and obesity/BMI through causal inference and mediation analyses
  • 2021
  • Ingår i: Gut. - : BMJ. - 1468-3288 .- 0017-5749. ; 70:2, s. 319-329
  • Tidskriftsartikel (refereegranskat)abstract
    • To characterise the association between type 2 diabetes mellitus (T2DM) subtypes (new-onset T2DM (NODM) or long-standing T2DM (LSDM)) and pancreatic cancer (PC) risk, to explore the direction of causation through Mendelian randomisation (MR) analysis and to assess the mediation role of body mass index (BMI).DesignInformation about T2DM and related factors was collected from 2018 PC cases and 1540 controls from the PanGenEU (European Study into Digestive Illnesses and Genetics) study. A subset of PC cases and controls had glycated haemoglobin, C-peptide and genotype data. Multivariate logistic regression models were applied to derive ORs and 95% CIs. T2DM and PC-related single nucleotide polymorphism (SNP) were used as instrumental variables (IVs) in bidirectional MR analysis to test for two-way causal associations between PC, NODM and LSDM. Indirect and direct effects of the BMI-T2DM-PC association were further explored using mediation analysis.ResultsT2DM was associated with an increased PC risk when compared with non-T2DM (OR=2.50; 95% CI: 2.05 to 3.05), the risk being greater for NODM (OR=6.39; 95% CI: 4.18 to 9.78) and insulin users (OR=3.69; 95% CI: 2.80 to 4.86). The causal association between T2DM (57-SNP IV) and PC was not statistically significant (ORLSDM=1.08, 95% CI: 0.86 to 1.29, ORNODM=1.06, 95% CI: 0.95 to 1.17). In contrast, there was a causal association between PC (40-SNP IV) and NODM (OR=2.85; 95% CI: 2.04 to 3.98), although genetic pleiotropy was present (MR-Egger: p value=0.03). Potential mediating effects of BMI (125-SNPs as IV), particularly in terms of weight loss, were evidenced on the NODM-PC association (indirect effect for BMI in previous years=0.55).ConclusionFindings of this study do not support a causal effect of LSDM on PC, but suggest that PC causes NODM. The interplay between obesity, PC and T2DM is complex.
  •  
16.
  • Mund, A., et al. (författare)
  • Deep Visual Proteomics defines single-cell identity and heterogeneity
  • 2022
  • Ingår i: Nature Biotechnology. - : Springer Nature. - 1087-0156 .- 1546-1696. ; 40:8, s. 1231-1240
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary melanoma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples. 
  •  
17.
  •  
18.
  • Kaufmann, M., et al. (författare)
  • Identification of early neurodegenerative pathways in progressive multiple sclerosis
  • 2022
  • Ingår i: Nature Neuroscience. - : Springer Nature. - 1097-6256 .- 1546-1726. ; 25:7, s. 944-955
  • Tidskriftsartikel (refereegranskat)abstract
    • Progressive multiple sclerosis (MS) is characterized by unrelenting neurodegeneration, which causes cumulative disability and is refractory to current treatments. Drug development to prevent disease progression is an urgent clinical need yet is constrained by an incomplete understanding of its complex pathogenesis. Using spatial transcriptomics and proteomics on fresh-frozen human MS brain tissue, we identified multicellular mechanisms of progressive MS pathogenesis and traced their origin in relation to spatially distributed stages of neurodegeneration. By resolving ligand–receptor interactions in local microenvironments, we discovered defunct trophic and anti-inflammatory intercellular communications within areas of early neuronal decline. Proteins associated with neuronal damage in patient samples showed mechanistic concordance with published in vivo knockdown and central nervous system (CNS) disease models, supporting their causal role and value as potential therapeutic targets in progressive MS. Our findings provide a new framework for drug development strategies, rooted in an understanding of the complex cellular and signaling dynamics in human diseased tissue that facilitate this debilitating disease. 
  •  
19.
  •  
20.
  • Garvanska, Dimitriya H., et al. (författare)
  • The NSP3 protein of SARS-CoV-2 binds fragile X mental retardation proteins to disrupt UBAP2L interactions
  • 2024
  • Ingår i: EMBO Reports. - : Springer Nature. - 1469-221X .- 1469-3178. ; 25:2, s. 902-926
  • Tidskriftsartikel (refereegranskat)abstract
    • Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.
  •  
21.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy