SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cubillos Francisco) "

Sökning: WFRF:(Cubillos Francisco)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cubillos, Francisco A, et al. (författare)
  • High-resolution mapping of complex traits with a four-parent advanced intercross yeast population.
  • 2013
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 1943-2631. ; 195:3, s. 1141-55
  • Tidskriftsartikel (refereegranskat)abstract
    • A large fraction of human complex trait heritability is due to a high number of variants with small marginal effects and their interactions with genotype and environment. Such alleles are more easily studied in model organisms, where environment, genetic makeup, and allele frequencies can be controlled. Here, we examine the effect of natural genetic variation on heritable traits in a very large pool of baker's yeast from a multiparent 12th generation intercross. We selected four representative founder strains to produce the Saccharomyces Genome Resequencing Project (SGRP)-4X mapping population and sequenced 192 segregants to generate an accurate genetic map. Using these individuals, we mapped 25 loci linked to growth traits under heat stress, arsenite, and paraquat, the majority of which were best explained by a diverging phenotype caused by a single allele in one condition. By sequencing pooled DNA from millions of segregants grown under heat stress, we further identified 34 and 39 regions selected in haploid and diploid pools, respectively, with most of the selection against a single allele. While the most parsimonious model for the majority of loci mapped using either approach was the effect of an allele private to one founder, we could validate examples of pleiotropic effects and complex allelic series at a locus. SGRP-4X is a deeply characterized resource that provides a framework for powerful and high-resolution genetic analysis of yeast phenotypes and serves as a test bed for testing avenues to attack human complex traits.
  •  
2.
  • Ibstedt, Sebastian, 1983, et al. (författare)
  • Dissection of advanced intercross lines provides information on evolution of yeast in shifting metal abundances
  • 2012
  • Ingår i: Experimental Approaches to Evolution and Ecology using Yeast (EMBO, Heidelberg, October 2012). ; 2012
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Metals can be friends or foes, depending on their chemical reactivity, dose or mode of exposure. Unfortunately, a general perspective on the importance of different processes for maintaining evolutionary flexibility and physiological homeostasis with regard to metal exposure is lacking. In order to understand the processes that contribute to metal toxicity and resistance in natural populations of Saccharomyces cerevisiae, we have analyzed a twelfth generation intercross between geographically and ecologically distinct populations. Large-scale phenotyping of highly recombined segregants allows us to pinpoint causative alleles to narrow intervals and to make inferences about the evolutionary history of complex traits in natural populations with regard to pleiotropy and epistasis. We show that metal detoxification in Saccharomyces cerevisiae is highly dependent on specific stress, while epistasis depends on population-specific alleles. These results are consistent with an evolutionary history of bottle-necks, rapid dispersion into ecologically differing habitats followed by independent evolutionary paths.
  •  
3.
  • Parts, Leopold, et al. (författare)
  • Revealing the genetic structure of a trait by sequencing a population under selection.
  • 2011
  • Ingår i: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 21:7, s. 1131-8
  • Tidskriftsartikel (refereegranskat)abstract
    • One approach to understanding the genetic basis of traits is to study their pattern of inheritance among offspring of phenotypically different parents. Previously, such analysis has been limited by low mapping resolution, high labor costs, and large sample size requirements for detecting modest effects. Here, we present a novel approach to map trait loci using artificial selection. First, we generated populations of 10-100 million haploid and diploid segregants by crossing two budding yeast strains of different heat tolerance for up to 12 generations. We then subjected these large segregant pools to heat stress for up to 12 d, enriching for beneficial alleles. Finally, we sequenced total DNA from the pools before and during selection to measure the changes in parental allele frequency. We mapped 21 intervals with significant changes in genetic background in response to selection, which is several times more than found with traditional linkage methods. Nine of these regions contained two or fewer genes, yielding much higher resolution than previous genomic linkage studies. Multiple members of the RAS/cAMP signaling pathway were implicated, along with genes previously not annotated with heat stress response function. Surprisingly, at most selected loci, allele frequencies stopped changing before the end of the selection experiment, but alleles did not become fixed. Furthermore, we were able to detect the same set of trait loci in a population of diploid individuals with similar power and resolution, and observed primarily additive effects, similar to what is seen for complex trait genetics in other diploid organisms such as humans.
  •  
4.
  • Salinas, Francisco, et al. (författare)
  • The Genetic Basis of Natural Variation in Oenological Traits in Saccharomyces cerevisiae.
  • 2012
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 7:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Saccharomyces cerevisiae is the main microorganism responsible for wine alcoholic fermentation. The oenological phenotypes resulting from fermentation, such as the production of acetic acid, glycerol, and residual sugar concentration are regulated by multiple genes and vary quantitatively between different strain backgrounds. With the aim of identifying the quantitative trait loci (QTLs) that regulate oenological phenotypes, we performed linkage analysis using three crosses between highly diverged S. cerevisiae strains. Segregants from each cross were used as starter cultures for 20-day fermentations, in synthetic wine must, to simulate actual winemaking conditions. Linkage analysis on phenotypes of primary industrial importance resulted in the mapping of 18 QTLs. We tested 18 candidate genes, by reciprocal hemizygosity, for their contribution to the observed phenotypic variation, and validated five genes and the chromosome II right subtelomeric region. We observed that genes involved in mitochondrial metabolism, sugar transport, nitrogen metabolism, and the uncharacterized ORF YJR030W explained most of the phenotypic variation in oenological traits. Furthermore, we experimentally validated an exceptionally strong epistatic interaction resulting in high level of succinic acid between the Sake FLX1 allele and the Wine/European MDH2 allele. Overall, our work demonstrates the complex genetic basis underlying wine traits, including natural allelic variation, antagonistic linked QTLs and complex epistatic interactions between alleles from strains with different evolutionary histories.
  •  
5.
  • Boynton, Primrose, et al. (författare)
  • Yeast ecology and communities
  • 2022
  • Ingår i: Yeast. - : Wiley. - 0749-503X .- 1097-0061. ; 39:1-2, s. 3-3
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
6.
  • Cubillos, Francisco A, et al. (författare)
  • Assessing the complex architecture of polygenic traits in diverged yeast populations.
  • 2011
  • Ingår i: Molecular ecology. - 1365-294X. ; 20:7, s. 1401-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Phenotypic variation arising from populations adapting to different niches has a complex underlying genetic architecture. A major challenge in modern biology is to identify the causative variants driving phenotypic variation. Recently, the baker's yeast, Saccharomyces cerevisiae has emerged as a powerful model for dissecting complex traits. However, past studies using a laboratory strain were unable to reveal the complete architecture of polygenic traits. Here, we present a linkage study using 576 recombinant strains obtained from crosses of isolates representative of the major lineages. The meiotic recombinational landscape appears largely conserved between populations; however, strain-specific hotspots were also detected. Quantitative measurements of growth in 23 distinct ecologically relevant environments show that our recombinant population recapitulates most of the standing phenotypic variation described in the species. Linkage analysis detected an average of 6.3 distinct QTLs for each condition tested in all crosses, explaining on average 39% of the phenotypic variation. The QTLs detected are not constrained to a small number of loci, and the majority are specific to a single cross-combination and to a specific environment. Moreover, crosses between strains of similar phenotypes generate greater variation in the offspring, suggesting the presence of many antagonistic alleles and epistatic interactions. We found that subtelomeric regions play a key role in defining individual quantitative variation, emphasizing the importance of the adaptive nature of these regions in natural populations. This set of recombinant strains is a powerful tool for investigating the complex architecture of polygenic traits.
  •  
7.
  • Liti, Gianni, et al. (författare)
  • High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome.
  • 2013
  • Ingår i: BMC genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Comparative genomics is a formidable tool to identify functional elements throughout a genome. In the past ten years, studies in the budding yeast Saccharomyces cerevisiae and a set of closely related species have been instrumental in showing the benefit of analyzing patterns of sequence conservation. Increasing the number of closely related genome sequences makes the comparative genomics approach more powerful and accurate. RESULTS: Here, we report the genome sequence and analysis of Saccharomyces arboricolus, a yeast species recently isolated in China, that is closely related to S. cerevisiae. We obtained high quality de novo sequence and assemblies using a combination of next generation sequencing technologies, established the phylogenetic position of this species and considered its phenotypic profile under multiple environmental conditions in the light of its gene content and phylogeny. CONCLUSIONS: We suggest that the genome of S. arboricolus will be useful in future comparative genomics analysis of the Saccharomyces sensu stricto yeasts.
  •  
8.
  • Warringer, Jonas, 1973, et al. (författare)
  • Trait variation in yeast is defined by population history.
  • 2011
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • A fundamental goal in biology is to achieve a mechanistic understanding of how and to what extent ecological variation imposes selection for distinct traits and favors the fixation of specific genetic variants. Key to such an understanding is the detailed mapping of the natural genomic and phenomic space and a bridging of the gap that separates these worlds. Here we chart a high-resolution map of natural trait variation in one of the most important genetic model organisms, the budding yeast Saccharomyces cerevisiae, and its closest wild relatives and trace the genetic basis and timing of major phenotype changing events in its recent history. We show that natural trait variation in S. cerevisiae exceeds that of its relatives, despite limited genetic variation, and follows the population history rather than the source environment. In particular, the West African population is phenotypically unique, with an extreme abundance of low-performance alleles, notably a premature translational termination signal in GAL3 that cause inability to utilize galactose. Our observations suggest that many S. cerevisiae traits may be the consequence of genetic drift rather than selection, in line with the assumption that natural yeast lineages are remnants of recent population bottlenecks. Disconcertingly, the universal type strain S288C was found to be highly atypical, highlighting the danger of extrapolating gene-trait connections obtained in mosaic, lab-domesticated lineages to the species as a whole. Overall, this study represents a step towards an in-depth understanding of the causal relationship between co-variation in ecology, selection pressure, natural traits, molecular mechanism, and alleles in a key model organism.
  •  
9.
  • Zörgö, Enikö, 1968, et al. (författare)
  • Life History Shapes Trait Heredity by Accumulation of Loss-of-Function Alleles in Yeast.
  • 2012
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 1537-1719 .- 0737-4038. ; 29:7, s. 1781-1789
  • Tidskriftsartikel (refereegranskat)abstract
    • A fundamental question in biology is whether variation in organisms primarily emerges as a function of adaptation or as a function of neutral genetic drift. Trait variation in the model organism baker's yeast follows population bottlenecks rather than environmental boundaries suggesting that it primarily results from genetic drift. Based on the yeast life history, we hypothesized that population-specific loss-of-function mutations emerging in genes recently released from selection is the predominant cause of trait variation within the species. As retention of one functional copy of a gene in diploid yeasts is typically sufficient to maintain completely unperturbed performance, we also conjectured that a crossing of natural yeasts from populations with different loss-of-function mutations would provide a further efficient test bed for this hypothesis. Charting the first species-wide map of trait inheritance in a eukaryotic organism, we found trait heredity to be strongly biased toward diploid hybrid performance exactly mimicking the performance of the best of the parents, as expected given a complete dominance of functional over nonfunctional alleles. Best parent heterosis, partial dominance, and negative nonadditivity were all rare phenomena. Nonadditive inheritance was observed primarily in crosses involving at least one very poor performing parent, most frequently of the West African population, and when molecularly dissected, loss-of-function alleles were identified as the underlying cause. These findings provide support for that population-specific loss-of-function mutations do have a strong impact on genotype-phenotype maps and underscores the role of neutral genetic drift as a driver for trait variation within species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy