SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dahlqvist Leinhard Olof 1978 ) "

Sökning: WFRF:(Dahlqvist Leinhard Olof 1978 )

  • Resultat 1-25 av 137
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahlqvist, Julia R., et al. (författare)
  • MRI in Neuromuscular Diseases: An Emerging Diagnostic Tool and Biomarker for Prognosis and Efficacy
  • 2020
  • Ingår i: Annals of Neurology. - : WILEY. - 0364-5134 .- 1531-8249. ; 88:4, s. 669-681
  • Forskningsöversikt (refereegranskat)abstract
    • There is an unmet need to identify biomarkers sensitive to change in rare, slowly progressive neuromuscular diseases. Quantitative magnetic resonance imaging (MRI) of muscle may offer this opportunity, as it is noninvasive and can be carried out almost independent of patient cooperation and disease severity. Muscle fat content correlates with muscle function in neuromuscular diseases, and changes in fat content precede changes in function, which suggests that muscle MRI is a strong biomarker candidate to predict prognosis and treatment efficacy. In this paper, we review the evidence suggesting that muscle MRI may be an important biomarker for diagnosis and to monitor change in disease severity. ANN NEUROL 2020
  •  
2.
  • Forsgren, Mikael F, 1983-, et al. (författare)
  • Biomarkers of liver fibrosis : prospective comparison of multimodal magnetic resonance, serum algorithms and transient elastography.
  • 2020
  • Ingår i: Scandinavian Journal of Gastroenterology. - : Taylor & Francis. - 0036-5521 .- 1502-7708. ; 55:7, s. 848-859
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND AIMS: Accurate biomarkers for quantifying liver fibrosis are important for clinical practice and trial end-points. We compared the diagnostic performance of magnetic resonance imaging (MRI), including gadoxetate-enhanced MRI and 31P-MR spectroscopy, with fibrosis stage and serum fibrosis algorithms in a clinical setting. Also, in a subset of patients, MR- and transient elastography (MRE and TE) was evaluated when available.METHODS: Patients were recruited prospectively if they were scheduled to undergo liver biopsy on a clinical indication due to elevated liver enzyme levels without decompensated cirrhosis. Within a month of the clinical work-up, an MR-examination and liver needle biopsy were performed on the same day. Based on late-phase gadoxetate-enhanced MRI, a mathematical model calculated hepatobiliary function (relating to OATP1 and MRP2). The hepatocyte gadoxetate uptake rate (KHep) and the normalised liver-to-spleen contrast ratio (LSC_N10) were also calculated. Nine serum fibrosis algorithms were investigated (GUCI, King's Score, APRI, FIB-4, Lok-Index, NIKEI, NASH-CRN regression score, Forns' score, and NAFLD-fibrosis score).RESULTS: The diagnostic performance (AUROC) for identification of significant fibrosis (F2-4) was 0.78, 0.80, 0.69, and 0.78 for MRE, TE, LSC_N10, and GUCI, respectively. For the identification of advanced fibrosis (F3-4), the AUROCs were 0.93, 0.84, 0.81, and 0.82 respectively.CONCLUSION: MRE and TE were superior for non-invasive identification of significant fibrosis. Serum fibrosis algorithms developed for specific liver diseases are applicable in this cohort of diverse liver diseases aetiologies. Gadoxetate-MRI was sufficiently sensitive to detect the low function losses associated with fibrosis. None was able to efficiently distinguish between stages within the low fibrosis stages.Lay summaryExcessive accumulation of scar tissue, fibrosis, in the liver is an important aspect in chronic liver disease. To replace the invasive needle biopsy, we have explored non-invasive methods to assess liver fibrosis. In our study we found that elastographic methods, which assess the mechanical properties of the liver, are superior in assessing fibrosis in a clinical setting. Of interest from a clinical trial point-of-view, none of the tested methods was sufficiently accurate to distinguish between adjacent moderate fibrosis stages.
  •  
3.
  •  
4.
  • Abbott, Rebecca, et al. (författare)
  • The qualitative grading of muscle fat infiltration in whiplash using fat and water magnetic resonance imaging
  • 2018
  • Ingår i: The spine journal. - : ELSEVIER SCIENCE INC. - 1529-9430 .- 1878-1632. ; 18:5, s. 717-725
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND CONTEXT: The development of muscle fat infiltration (MFI) in the neck muscles is associated with poor functional recovery following whiplash injury. Custom software and time-consuming manual segmentation of magnetic resonance imaging (MRI) is required for quantitative analysis and presents as a barrier for clinical translation. PURPOSE: The purpose of this work was to establish a qualitative MRI measure for MFI and evaluate its ability to differentiate between individuals with severe whiplash-associated disorder (WAD), mild or moderate WAD, and healthy controls. STUDY DESIGN/SETTING: This is a cross-sectional study. PATIENT SAMPLE: Thirty-one subjects with WAD and 31 age-and sex-matched controls were recruited from an ongoing randomized controlled trial. OUTCOME MEASURES: The cervical multifidus was visually identified and segmented into eighths in the axial fat/water images (C4-C7). Muscle fat infiltration was assessed on a visual scale: 0 for no or marginal MFI, 1 for light MFI, and 2 for distinct MFI. The participants with WAD were divided in two groups: mild or moderate and severe based on Neck Disability Index % scores. METHODS: The mean regional MFI was compared between the healthy controls and each of the WAD groups using the Mann-Whitney U test. Receiver operator characteristic (ROC) analyses were carried out to evaluate the validity of the qualitative method. RESULTS: Twenty (65%) patients had mild or moderate disability and 11 (35%) were considered severe. Inter- and intra-rater reliability was excellent when grading was averaged by level or when frequency of grade II was considered. Statistically significant differences (pamp;lt;.05) in regional MFI were particularly notable between the severe WAD group and healthy controls. The ROC curve, based on detection of distinct MFI, showed an area-under-the curve of 0.768 (95% confidence interval 0.59-0.94) for discrimination of WAD participants. CONCLUSIONS: These preliminary results suggest a qualitative MRI measure for MFI is reliable and valid, and may prove useful toward the classification of WAD in radiology practice. (C) 2017 Elsevier Inc. All rights reserved.
  •  
5.
  • Abrahamsson, Annelie, et al. (författare)
  • Dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment in vivo
  • 2016
  • Ingår i: Oncoimmunology. - : TAYLOR & FRANCIS INC. - 2162-4011 .- 2162-402X. ; 5:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation is one of the hallmarks of carcinogenesis. High mammographic density has been associated with increased risk of breast cancer but the mechanisms behind are poorly understood. We evaluated whether breasts with different mammographic densities exhibited differences in the inflammatory microenvironment.Postmenopausal women attending the mammography-screening program were assessed having extreme dense, n = 20, or entirely fatty breasts (nondense), n = 19, on their regular mammograms. Thereafter, the women were invited for magnetic resonance imaging (MRI), microdialysis for the collection of extracellular molecules in situ and a core tissue biopsy for research purposes. On the MRI, lean tissue fraction (LTF) was calculated for a continuous measurement of breast density. LTF confirmed the selection from the mammograms and gave a continuous measurement of breast density. Microdialysis revealed significantly increased extracellular in vivo levels of IL-6, IL-8, vascular endothelial growth factor, and CCL5 in dense breast tissue as compared with nondense breasts. Moreover, the ratio IL-1Ra/IL-1 was decreased in dense breasts. No differences were found in levels of IL-1, IL-1Ra, CCL2, leptin, adiponectin, or leptin:adiponectin ratio between the two breast tissue types. Significant positive correlations between LTF and the pro-inflammatory cytokines as well as between the cytokines were detected. Stainings of the core biopsies exhibited increased levels of immune cells in dense breast tissue.Our data show that dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment and, if confirmed in a larger cohort, suggests novel targets for prevention therapies for women with dense breast tissue.
  •  
6.
  •  
7.
  • Ajmera, Veeral H., et al. (författare)
  • MRI Assessment of Treatment Response in HIV-associated NAFLD: A Randomized Trial of a Stearoyl-Coenzyme-A-Desaturase-1 Inhibitor (ARRIVE Trial)
  • 2019
  • Ingår i: Hepatology. - : WILEY. - 0270-9139 .- 1527-3350. ; 70:5, s. 1531-1545
  • Tidskriftsartikel (refereegranskat)abstract
    • Aramchol, an oral stearoyl-coenzyme-A-desaturase-1 inhibitor, has been shown to reduce hepatic fat content in patients with primary nonalcoholic fatty liver disease (NAFLD); however, its effect in patients with human immunodeficiency virus (HIV)-associated NAFLD is unknown. The aramchol for HIV-associated NAFLD and lipodystrophy (ARRIVE) trial was a double-blind, randomized, investigator-initiated, placebo-controlled trial to test the efficacy of 12 weeks of treatment with aramchol versus placebo in HIV-associated NAFLD. Fifty patients with HIV-associated NAFLD, defined by magnetic resonance imaging (MRI)-proton density fat fraction (PDFF) amp;gt;= 5%, were randomized to receive either aramchol 600 mg daily (n = 25) or placebo (n = 25) for 12 weeks. The primary endpoint was a change in hepatic fat as measured by MRI-PDFF in colocalized regions of interest. Secondary endpoints included changes in liver stiffness using magnetic resonance elastography (MRE) and vibration-controlled transient elastography (VCTE), and exploratory endpoints included changes in total-body fat and muscle depots on dual-energy X-ray absorptiometry (DXA), whole-body MRI, and cardiac MRI. The mean (+/- standard deviation) of age and body mass index were 48.2 +/- 10.3 years and 30.7 +/- 4.6 kg/m(2), respectively. There was no difference in the reduction in mean MRI-PDFF between the aramchol group at -1.3% (baseline MRI-PDFF 15.6% versus end-of-treatment MRI-PDFF 14.4%, P = 0.24) and the placebo group at -1.4% (baseline MRI-PDFF 13.3% versus end-of-treatment MRI-PDFF 11.9%, P = 0.26). There was no difference in the relative decline in mean MRI-PDFF between the aramchol and placebo groups (6.8% versus 1.1%, P = 0.68). There were no differences in MRE-derived and VCTE-derived liver stiffness and whole-body (fat and muscle) composition analysis by MRI or DXA. Compared to baseline, end-of-treatment aminotransferases were lower in the aramchol group but not in the placebo arm. There were no significant adverse events. Conclusion: Aramchol, over a 12-week period, did not reduce hepatic fat or change body fat and muscle composition by using MRI-based assessment in patients with HIV-associated NAFLD (clinicaltrials.gov ID:NCT02684591).
  •  
8.
  • Andersson, Thord, 1972-, et al. (författare)
  • Geodesic registration for interactive atlas-based segmentation using learned multi-scale anatomical manifolds
  • 2018
  • Ingår i: Pattern Recognition Letters. - : Elsevier. - 0167-8655 .- 1872-7344. ; 112, s. 340-345
  • Tidskriftsartikel (refereegranskat)abstract
    • Atlas-based segmentation is often used to segment medical image regions. For intensity-normalized data, the quality of these segmentations is highly dependent on the similarity between the atlas and the target under the used registration method. We propose a geodesic registration method for interactive atlas-based segmentation using empirical multi-scale anatomical manifolds. The method utilizes unlabeled images together with the labeled atlases to learn empirical anatomical manifolds. These manifolds are defined on distinct scales and regions and are used to propagate the labeling information from the atlases to the target along anatomical geodesics. The resulting competing segmentations from the different manifolds are then ranked according to an image-based similarity measure. We used image volumes acquired using magnetic resonance imaging from 36 subjects. The performance of the method was evaluated using a liver segmentation task. The result was then compared to the corresponding performance of direct segmentation using Dice Index statistics. The method shows a significant improvement in liver segmentation performance between the proposed method and direct segmentation. Furthermore, the standard deviation in performance decreased significantly. Using competing complementary manifolds defined over a hierarchy of region of interests gives an additional improvement in segmentation performance compared to the single manifold segmentation.
  •  
9.
  • Beck, Dani, et al. (författare)
  • Adipose tissue distribution from body MRI is associated with cross-sectional and longitudinal brain age in adults
  • 2022
  • Ingår i: NeuroImage. - : Elsevier Science Ltd. - 2213-1582. ; 33
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an intimate body-brain connection in ageing, and obesity is a key risk factor for poor cardiometabolic health and neurodegenerative conditions. Although research has demonstrated deleterious effects of obesity on brain structure and function, the majority of studies have used conventional measures such as waist-to-hip ratio, waist circumference, and body mass index. While sensitive to gross features of body composition, such global anthropometric features fail to describe regional differences in body fat distribution and composition. The sample consisted of baseline brain magnetic resonance imaging (MRI) acquired from 790 healthy participants aged 18-94 years (mean +/- standard deviation (SD) at baseline: 46.8 +/- 16.3), and follow-up brain MRI collected from 272 of those individuals (two time-points with 19.7 months interval, on average (min = 9.8, max = 35.6). Of the 790 included participants, cross-sectional body MRI data was available from a subgroup of 286 participants, with age range 19-86 (mean = 57.6, SD = 15.6). Adopting a mixed cross-sectional and longitudinal design, we investigated cross-sectional body magnetic resonance imaging measures of adipose tissue distribution in relation to longitudinal brain structure using MRI-based morphometry (T1) and diffusion tensor imaging (DTI). We estimated tissue-specific brain age at two time points and performed Bayesian multilevel modelling to investigate the associations between adipose measures at follow-up and brain age gap (BAG) - the difference between actual age and the prediction of the brains biological age - at baseline and follow-up. We also tested for interactions between BAG and both time and age on each adipose measure. The results showed credible associations between T1-based BAG and liver fat, muscle fat infiltration (MFI), and weight-to-muscle ratio (WMR), indicating older-appearing brains in people with higher measures of adipose tissue. Longitudinal evidence supported interaction effects between time and MFI and WMR on T1-based BAG, indicating accelerated ageing over the course of the study period in people with higher measures of adipose tissue. The results show that specific measures of fat distribution are associated with brain ageing and that different compartments of adipose tissue may be differentially linked with increased brain ageing, with potential to identify key processes involved in age-related transdiagnostic disease processes.
  •  
10.
  • Borga, Magnus, 1965-, et al. (författare)
  • Advanced body composition assessment: From body mass index to body composition profiling
  • 2018
  • Ingår i: Journal of Investigative Medicine. - : BMJ Publishing Group Ltd. - 1081-5589 .- 1708-8267. ; 66:5, s. 887-895
  • Forskningsöversikt (refereegranskat)abstract
    • This paper gives a brief overview of common non-invasive techniques for body composition analysis and a more in-depth review of a body composition assessment method based on fat-referenced quantitative magnetic resonance imaging (MRI). Earlier published studies of this method are summarized, and a previously un-published validation study, based on 4.753 subjects from the UK Biobank imaging cohort, comparing the quantitative MRI method with dual-energy x-ray absorptiometry (DXA) is presented. For whole-body measurements of adipose tissue (AT) or fat and lean tissue (LT), DXA and quantitative MRI show excellent agreement with linear correlation of 0.99 and 0.97, and coefficient of variation (CV) of 4.5 % and 4.6 % for fat (computed from AT) and lean tissue respectively, but the agreement was found significantly lower for visceral adipose tissue, with a CV of more than 20 %. The additional ability of MRI to also measure muscle volumes, muscle AT infiltration and ectopic fat in combination with rapid scanning protocols and efficient image analysis tools make quantitative MRI a powerful tool for advanced body composition assessment. 
  •  
11.
  • Borga, Magnus, et al. (författare)
  • Reproducibility and repeatability of MRI-based body composition analysis
  • 2020
  • Ingår i: Magnetic Resonance in Medicine. - : WILEY. - 0740-3194 .- 1522-2594. ; 84:6, s. 3146-3156
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose There is an absence of reproducibility studies on MRI-based body composition analysis in current literature. Therefore, the aim of this study was to investigate the between-scanner reproducibility and the repeatability of a method for MRI-based body composition analysis. Methods Eighteen healthy volunteers of varying body mass index and adiposity were each scanned twice on five different 1.5T and 3T scanners from three different vendors. Two-point Dixon neck-to knee images and two additional liver scans were acquired with similar protocols. Visceral adipose tissue (VAT) volume, abdominal subcutaneous adipose tissue (ASAT) volume, thigh muscle volume, and muscle fat infiltration (MFI) in the thigh muscle were measured. Liver proton density fat fraction (PDFF) was assessed using two different methods, the scanner vendors 6-point method and an in-house 2-point method. Within-scanner test-retest repeatability and between-scanner reproducibility were calculated using analysis of variance. Results Repeatability coefficients were 13 centiliters (cl) (VAT), 24 cl (ASAT), 17 cl (total thigh muscle volume), 0.53% (MFI), and 1.27-1.37% for liver PDFF. Reproducibility coefficients were 24 cl (VAT), 42 cl (ASAT), 31 cl (total thigh muscle volume), 1.44% (MFI), and 2.37-2.40% for liver PDFF. Conclusion For all measures except MFI, the within-scanner repeatability explained much of the overall reproducibility. The two methods for measuring liver fat had similar reproducibility. This study showed that the investigated method eliminates effects due to scanner differences. The results can be used for power calculations in clinical studies or to better understand the scanner-induced variability in clinical applications.
  •  
12.
  • Borga, Magnus, et al. (författare)
  • Semi-Supervised Learning of Anatomical Manifolds for Atlas-Based Segmentation of Medical Images
  • 2016
  • Ingår i: Proceedings of the 23rd International Conference on Pattern Recognition (ICPR). - : IEEE Computer Society. - 9781509048472 - 9781509048489 ; , s. 3146-3149
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a novel method for atlas-based segmentation of medical images. The method uses semi- supervised learning of a graph describing a manifold of anatom- ical variations of whole-body images, where unlabelled data are used to find a path with small deformations from the labelled atlas to the target image. The method is evaluated on 36 whole-body magnetic resonance images with manually segmented livers as ground truth. Significant improvement (p < 0.001) was obtained compared to direct atlas-based registration. 
  •  
13.
  •  
14.
  •  
15.
  • Covarrubias, Yesenia, et al. (författare)
  • Pilot study on longitudinal change in pancreatic proton density fat fraction during a weight-loss surgery program in adults with obesity
  • 2019
  • Ingår i: Journal of Magnetic Resonance Imaging. - : WILEY. - 1053-1807 .- 1522-2586. ; 50:4, s. 1092-1102
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Quantitative-chemical-shift-encoded (CSE)-MRI methods have been applied to the liver. The feasibility and potential utility CSE-MRI in monitoring changes in pancreatic proton density fat fraction (PDFF) have not yet been demonstrated. Purpose To use quantitative CSE-MRI to estimate pancreatic fat changes during a weight-loss program in adults with severe obesity and nonalcoholic fatty liver disease (NAFLD). To explore the relationship of reduction in pancreatic PDFF with reductions in anthropometric indices. Study Type Prospective/longitudinal. Population Nine adults with severe obesity and NAFLD enrolled in a weight-loss program. Field Strength/Sequence CSE-MRI fat quantification techniques and multistation-volumetric fat/water separation techniques were performed at 3 T. Assessment PDFF values were recorded from parametric maps colocalized across timepoints. Statistical Tests Rates of change of log-transformed variables across time were determined (linear-regression), and their significance assessed compared with no change (Wilcoxon test). Rates of change were correlated pairwise (Spearmans correlation). Results Mean pancreatic PDFF decreased by 5.7% (range 0.7-17.7%) from 14.3 to 8.6%, hepatic PDFF by 11.4% (2.6-22.0%) from 14.8 to 3.4%, weight by 30.9 kg (17.3-64.2 kg) from 119.0 to 88.1 kg, body mass index by 11.0 kg/m(2) (6.3-19.1 kg/m(2)) from 44.1 to 32.9 kg/m(2), waist circumference (WC) by 25.2 cm (4.0-41.0 cm) from 133.1 to 107.9 cm, HC by 23.5 cm (4.5-47.0 cm) from 135.8 to 112.3 cm, visceral adipose tissue (VAT) by 2.9 L (1.7-5.7 L) from 7.1 to 4.2 L, subcutaneous adipose tissue (SCAT) by 4.0 L (2.9-7.4 L) from 15.0 to 11.0 L. Log-transformed rate of change for pancreatic PDFF was moderately correlated with log-transformed rates for hepatic PDFF, VAT, SCAT, and WC (rho = 0.5, 0.47, 0.45, and 0.48, respectively), although not statistically significant. Data Conclusion Changes in pancreatic PDFF can be estimated by quantitative CSE-MRI in adults undergoing a weight-loss surgery program. Pancreatic and hepatic PDFF and anthropometric indices decreased significantly. Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;50:1092-1102.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Dahlqvist Leinhard, Olof, 1978-, et al. (författare)
  • Body Composition Profiling using MRI - Normative Data for Subjects with Cardiovascular Disease Extracted from the UK Biobank Imaging Cohort
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • PURPOSETo describe the distribution of MRI-derived body composition measurements in subjects with cardiovascular disease (CVD) compared to subjects without any history of CVD.METHOD AND MATERIALS1864 males and 2036 females with an age range from 45 to 78 years from the UK Biobank imaging study were included in the study. Visceral adipose tissue volume normalized with height2 (VATi), total abdominal adipose tissue volume normalized with height2 (ATATi), total lean thigh muscle volume normalized with body weight (muscle ratio) and liver proton density fat fraction (PDFF) were measured with a 2-point Dixon imaging protocol covering neck to knee and a 10-point Dixon single slice protocol positioned within the liver using a 1.5T MR-scanner (Siemens, Germany). The MR-images were analyzed using AMRA® Profiler research (AMRA, Sweden). 213 subjects with history of cardiovascular events (angina, heart attack, or stroke) (event group) were age and gender matched to subjects with high blood pressure (HBP group), and subjects without CVD (controls).Kruskal-Wallis and Mann-Whitney U tests were used to test the observed differences for each measurement and group without correction for multiple comparisons.RESULTSVATi in the event group was 1.73 (1.13 - 2.32) l/m2 (median, 25%-75% percentile) compared to 1.68 (1.19 - 2.23) in the HBP group, and 1.30 (0.82-1.87) in the controls. ATATi in the event group was 4.31 (2.90-5.39) l/m2 compared to 4.05 (3.07-5.12) in the HBP group, and 3.48 (2.48-4.61) in the controls. Muscle ratio in the event group was 0.13 (0.12 - 0.15) l/kg as well as in the HBP group, compared to 0.14 (0.12 - 0.15) in the controls. Liver PDFF in the event group was 2.88 (1.77 - 7.72) % compared to 3.44 (2.04-6.18) in the HBP group, and 2.50 (1.58 - 5.15) in the controls. Kruskal-Wallis test showed significant differences for all variables and group comparisons (p<0.007). The post hoc test showed significant differences comparing the controls to both the event group and the HBP group. These were more significant for VATi and ATATi (p<10-4) than for muscle ratio and PDFF (p<0.03). No significant differences were detected between the event group and the HBP group.CONCLUSIONCardiovascular disease is strongly associated with high VATi, liver fat, and ATATi, and with low muscle ratio.CLINICAL RELEVANCE/APPLICATIONThe metabolic syndrome component in CVD can be effectively described using MRI-based body composition profiling.
  •  
21.
  • Dahlqvist Leinhard, Olof, 1978-, et al. (författare)
  • Body Composition Profiling using MRI - Normative Data for Subjects with Diabetes Extracted from the UK Biobank Imaging Cohort
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • PURPOSETo describe the distribution of MRI derived body composition measurements in subjects with diabetes mellitus (DM) compared to subjects without diabetes.METHOD AND MATERIALS3900 subjects (1864 males and 2036 females) from the UK Biobank imaging study were included in the study. The age range was 45 to 78 years. Visceral adipose tissue volume normalized with height2 (VATi), total abdominal adipose tissue volume normalized with height2 (ATATi), total lean thigh muscle volume normalized with body weight (muscle ratio) and liver proton density fat fraction (PDFF) were measured with a 6 minutes 2-point Dixon imaging protocol covering neck to knee and a 10-point Dixon single axial slice protocol positioned within the liver using a 1.5T MR-scanner (Siemens, Germany). The MR-images were analyzed using AMRA® Profiler research (AMRA, Sweden). 194 subjects with clinically diagnosed DM (DM group) were age and gender matched to subjects without DM (control group). For each variable and group, the median, 25%-percentile and 75%-percentile was calculated. Mann-Whitney U test was used to test the observed differences.RESULTSVATi in the DM group was 2.13 (1.43-2.62) l/m2 (median, 25% - 75% percentile) compared to 1.32 (0.86 - 1.79) l/m2 in the control group. ATATi in the DM group was 4.94 (3.86-6.19) l/m2 compared to 3.40 (2.56 - 4.70) l/m2 in the control group. Muscle ratio in the DM group was 0.13 (0.11 - 0.14) l/kg compared to 0.14 (0.12 - 0.15) l/kg in the control group. Liver PDFF in the DM group was 7.23 (2.68 - 13.26) % compared to 2.49 (1.53 - 4.73) % in the control group. Mann-Whitney U test detected significant differences between the DM group and the control group for all variables (p<10-5).CONCLUSIONDM is strongly associated with high visceral fat, liver fat, and total abdominal fat, and low muscle ratio.CLINICAL RELEVANCE/APPLICATIONBody composition profiling shows high potential to provide direct biomarkers to improve characterization and early diagnosis of DM.
  •  
22.
  •  
23.
  •  
24.
  • Dahlqvist Leinhard, Olof, 1978-, et al. (författare)
  • Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA : a pilot study
  • 2012
  • Ingår i: European Radiology. - : Springer Berlin/Heidelberg. - 0938-7994 .- 1432-1084. ; 22:3, s. 642-653
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives   To develop and evaluate a procedure for quantifying the hepatocyte-specific uptake of Gd-BOPTA and Gd-EOB-DTPA using dynamic contrast-enhanced (DCE) MRI. Methods   Ten healthy volunteers were prospectively recruited and 21 patients with suspected hepatobiliary disease were retrospectively evaluated. All subjects were examined with DCE-MRI using 0.025 mmol/kg of Gd-EOB-DTPA. The healthy volunteers underwent an additional examination using 0.05 mmol/kg of Gd-BOPTA. The signal intensities (SI) of liver and spleen parenchyma were obtained from unenhanced and enhanced acquisitions. Using pharmacokinetic models of the liver and spleen, and an SI rescaling procedure, a hepatic uptake rate, K Hep, estimate was derived. The K Hep values for Gd-EOB-DTPA were then studied in relation to those for Gd-BOPTA and to a clinical classification of the patient’s hepatobiliary dysfunction. Results   K Hep estimated using Gd-EOB-DTPA showed a significant Pearson correlation with K Hep estimated using Gd-BOPTA (r = 0.64; P < 0.05) in healthy subjects. Patients with impaired hepatobiliary function had significantly lower K Hep than patients with normal hepatobiliary function (K Hep = 0.09 ± 0.05 min-1 versus K Hep = 0.24 ± 0.10 min−1; P < 0.01). Conclusions   A new procedure for quantifying the hepatocyte-specific uptake of T 1-enhancing contrast agent was demonstrated and used to show that impaired hepatobiliary function severely influences the hepatic uptake of Gd-EOB-DTPA. Key Points   • The liver uptake of contrast agents may be measured with standard clinical MRI. • Calculation of liver contrast agent uptake is improved by considering splenic uptake. • Liver function affects the uptake of the liver-specific contrast agent Gd-EOB-DTPA. • Hepatic uptake of two contrast agents (Gd-EOB-DTPA, Gd-BOPTA) is correlated in healthy individuals. • This method can be useful for determining liver function, e.g. before hepatic surgery
  •  
25.
  • Dahlqvist Leinhard, Olof, 1978- (författare)
  • Quantitative magnetic resonance in diffuse liver and neurological disease
  • 2008
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Magnetic resonance (MR) has become one of the most important diagnostic tools in modern medicine. It provides superior soft tissue contrast compared to other imaging modalities, it is extremely flexible as it can be used to image all parts of the body, and it is considered to be safe for patients.Today almost all MR is performed in a non-quantitative manner, only by comparing neighbouring tissue in the search for pathology. It is possible to quantify the MR-signals to its physical entities, but time consuming and complicated calibration procedures have prevented this in clinical routine.In this work two different applications of quantitative MR-spectroscopy in diffuse liver and neurological disease, and a new rapid method for simultaneous quantification of proton density, T1 relaxation and T2* relaxation in MR-imaging are presented.In Paper I, absolutely quantified phosphorus MR-spectroscopy was tested as a predictive tool in order to determine the degree of fibrosis on patients with diffuse liver disease. One group with steatosis and none to moderate inflammation (n=13), one group with severe fibrosis or cirrhosis (n=16), and one group of healthy volunteers (n=13) were included in the study.Lower concentrations of PDE (p = 0.025), and a higher metabolic charge (AC) [42] (p < 0.001) were found in the cirrhosis group. A sensitivity and specificity of 81% and 69% respectively, were found for the discrimination between mild and advanced fibrosis using PDE concentrations, and 93% and 54% using AC. The results suggest PDE as a marker of liver fibrosis and AC as a potential clinically useful parameter in discriminating mild from advanced fibrosis.In Paper II proton MR-spectroscopy was used to investigate if there were differences in the concentrations of the observable metabolites in normal appearing white matter in patients with clinically definite multiple sclerosis (MS), and with normal MR-images compared to healthy volunteers. This 'MRI-negative' group consisted of fourteen patients which were compared with fourteen healthy controls. Absolutely quantified proton MR-spectra were acquired from four different voxels in NAWM.Significant differences in absolute metabolite concentrations were observed between the two groups. The MS-patients had lower total N-acetyl compounds (tNA) (p=0.002) compared to the healthy controls and lower concentration of choline-containing compounds (Cho) compared to the healthy controls (p<0.001). EDSS showed a slightly positive correlation to myolns concentrations (0.14mM/EDSS,r2 = 0.06) and a slightly negative correlation to tNA concentrations (-0.41 mM/EDSS,r2 = 0.22). The finding of lower Cho concentrations has not been reported previously and was unexpected.In Paper III a new rapid imaging method was presented for determination of proton density, B1, T2* relaxation and T1 relaxation. The method was based on a modified Look-Locker pulse sequence with two main differences. (1) The exchange of the inversion pulse in the Lock-Looker sequence to a saturation pulse in order to enable detection of the B1 field, and (2) the introduction of a multi-echo read-out to enable the detection of T2*. The signal intensity was then scaled to proton density using the estimated B1, T1, and T2* value.The method was validated in vitro, using phantoms filled with solution of different T1 and T2* water relaxation values, and by comparing the results of the measurements to reference metcyods. In vivo the method was compared with literature values.The validation showed that the method was highly accurate, both in vitro and in vivo, and that this method enabled quantitative imaging of MR-parameters within a clinically feasible examination time. Potential applications of the method are, among a great range of possibilities, to rapidly provide all the necessary quantification parameters in MR-spectroscopy, and to simultaneously provide fast quantitative diagnostic imaging.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 137
Typ av publikation
konferensbidrag (68)
tidskriftsartikel (61)
forskningsöversikt (5)
annan publikation (1)
doktorsavhandling (1)
licentiatavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (89)
övrigt vetenskapligt/konstnärligt (48)
Författare/redaktör
Dahlqvist Leinhard, ... (136)
Lundberg, Peter, 195 ... (55)
Linge, Jennifer (26)
Lundberg, Peter (22)
Borga, Magnus (21)
Forsgren, Mikael (21)
visa fler...
Romu, Thobias (20)
Smedby, Örjan, 1956- (18)
Landtblom, Anne-Mari ... (16)
Tisell, Anders, 1981 ... (15)
Kechagias, Stergios (14)
West, Janne, 1982- (11)
Ekstedt, Mattias (11)
Borga, Magnus, 1965- (10)
Karlsson, Anette (8)
Brismar, Torkel (8)
Bell, Jimmy (8)
Cedersund, Gunnar (7)
Karlsson, Markus (7)
Westlye, Lars T (5)
Andreassen, Ole A (5)
Kaufmann, Tobias (5)
Engström, Maria, 195 ... (5)
Gurholt, Tiril P. (5)
Nasr, Patrik (4)
Lund, Eva (4)
Lund, Eva, 1944- (4)
Ekstedt, Mattias, 19 ... (4)
Gerdle, Björn (4)
van der Meer, Dennis (4)
De Lange, Ann-Marie ... (4)
Aalto, Anne, 1971- (3)
Peolsson, Anneli (3)
Peolsson, Anneli, 19 ... (3)
Elliott, James M. (3)
Ernerudh, Jan (3)
Kihlberg, Johan (3)
Magnusson, Maria (3)
Petersson, Mikael (3)
Ahlgren, André (3)
Dahle, Charlotte (3)
Almer, Sven (3)
Gustafsson, Thomas (3)
Sandström, Per (3)
Norén, Bengt (3)
Bengtsson, Ann (3)
Ghafouri, Bijar (3)
Beck, Dani (3)
Simon, Rozalyn (3)
Ignatova, Simone (3)
visa färre...
Lärosäte
Linköpings universitet (137)
Karolinska Institutet (5)
Uppsala universitet (3)
Göteborgs universitet (2)
Kungliga Tekniska Högskolan (1)
Örebro universitet (1)
visa fler...
Jönköping University (1)
Lunds universitet (1)
visa färre...
Språk
Engelska (134)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (68)
Teknik (22)
Lantbruksvetenskap (2)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy