SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dandouras I.) "

Sökning: WFRF:(Dandouras I.)

  • Resultat 1-25 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Coustenis, A., et al. (författare)
  • TandEM : Titan and Enceladus mission
  • 2009
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 893-946
  • Tidskriftsartikel (refereegranskat)abstract
    • TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (MontgolfiSre) and possibly several landing probes to be delivered through the atmosphere.
  •  
2.
  • Yamauchi, M., et al. (författare)
  • Plasma-neutral gas interactions in various space environments : Assessment beyond simplified approximations as a Voyage 2050 theme
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508.
  • Tidskriftsartikel (refereegranskat)abstract
    • In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribution of externally provided energy to the composing species? (B) How and by how much do plasma-neutral gas interactions contribute toward the growth of heavy complex molecules and biomolecules? Answering these questions is an absolute prerequisite for addressing the long-standing questions of atmospheric escape, the origin of biomolecules, and their role in the evolution of planets, moons, or comets, under the influence of energy sources in the form of electromagnetic and corpuscular radiation, because low-energy ion-neutral cross-sections in space cannot be reproduced quantitatively in laboratories for conditions of satisfying, particularly, (1) low-temperatures, (2) tenuous or strong gradients or layered media, and (3) in low-gravity plasma. Measurements with a minimum core instrument package (< 15 kg) can be used to perform such investigations in many different conditions and should be included in all deep-space missions. These investigations, if specific ranges of background parameters are considered, can also be pursued for Earth, Mars, and Venus. 
  •  
3.
  • Orsini, S., et al. (författare)
  • Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission
  • 2022
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury’s southern inner magnetosphere is an unexplored region as it was not observed by earlier space missions. In October 2021, BepiColombo mission has passed through this region during its first Mercury flyby. Here, we describe the observations of SERENA ion sensors nearby and inside Mercury’s magnetosphere. An intermittent high-energy signal, possibly due to an interplanetary magnetic flux rope, has been observed downstream Mercury, together with low energy solar wind. Low energy ions, possibly due to satellite outgassing, were detected outside the magnetosphere. The dayside magnetopause and bow-shock crossing were much closer to the planet than expected, signature of a highly eroded magnetosphere. Different ion populations have been observed inside the magnetosphere, like low latitude boundary layer at magnetopause inbound and partial ring current at dawn close to the planet. These observations are important for understanding the weak magnetosphere behavior so close to the Sun, revealing details never reached before.
  •  
4.
  • Plainaki, C., et al. (författare)
  • Towards a Global Unified Model of Europa’s Tenuous Atmosphere
  • 2018
  • Ingår i: Space Science Reviews. - : Springer Netherlands. - 0038-6308 .- 1572-9672. ; 214:1
  • Forskningsöversikt (refereegranskat)abstract
    • Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa’s tenuous atmosphere and on the exchange of material between the moon’s surface and Jupiter’s magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon’s icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa’s tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA’s JUpiter ICy moons Explorer (JUICE) mission, and NASA’s Europa Clipper mission). We review the existing models of Europa’s tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.
  •  
5.
  • Runov, A., et al. (författare)
  • Observations of an active thin current sheet
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A7
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze observations of magnetotail current sheet dynamics during a substorm between 2330 and 2400 UT on 28 August 2005 when Cluster was in the plasma sheet at [-17.2, -4.49, 0.03] R-E (GSM) with the foot points near the IMAGE ground-based network. Observations from the Cluster spacecraft, ground-based magnetometers, and the IMAGE satellite showed that the substorm started in a localized region near midnight, expanding azimuthally. A thin current sheet with a thickness of less than 900 km and current density of about 30 nA/m(2) was observed during 5 min around the substorm onset. The thinning of the current sheet was accompanied by tailward plasma flow at a velocity of -700 km/s and subsequent reversal to earthward flow at V-x approximate to 500 km/s coinciding with a B-z turning from -5 to + 10 nT. The analysis of magnetic and electric fields behavior and particle distributions reveals signatures of impulsive (with similar to 1 min timescale) activations of the thin current sheet. These observations were interpreted in the framework of transient reconnection, although the data analysis reveals serious disagreements with the classical 2.5-D X line model.
  •  
6.
  • Aikio, A. T., et al. (författare)
  • EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary
  • 2008
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:1, s. 87-105
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between Tromso (66.6 degrees cgmLat) and Longyearbyen (75.2 degrees cgmLat) on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB) made zig-zag-type motion with amplitude of 2.5 degrees cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL). The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992). The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm. During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4 R-E mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H+ and O+ ions took place within the plasma sheet boundary layer (PSBL) as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency) fluctuations. The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2 degrees during similar to 5 min. The beginning of the poleward motion of the PCB was associated with an intensification of the downward FAC at the boundary. We suggest that the downward FAC sheet at the PCB is the high-altitude counterpart of the Earthward flowing FAC produced in the vicinity of the magnetotail neutral line by the Hall effect (Sonnerup, 1979) during a short-lived reconnection pulse.
  •  
7.
  • Bavassano Cattaneo, M. Bice, et al. (författare)
  • Kinetic signatures during a quasi-continuous lobe reconnection event : Cluster Ion Spectrometer (CIS) observations
  • 2006
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 111:A9, s. A09212-
  • Tidskriftsartikel (refereegranskat)abstract
    • On 3 December 2001 the Cluster spacecraft observed a long-lasting lobe reconnection event in the southern high-latitude dusk magnetopause (MP) tailward of the cusp, during a 4 hour interval of mainly northward interplanetary magnetic field ( IMF) and of sub-Alfvenic magnetosheath flow. Almost all the MP encounters have accelerated flows ( for which the Walen test has been successfully verified by Retino et al. ( 2005)) as well as a large number of secondary populations related to reconnection, that is, ions of magnetosheath or magnetospheric origin which cross the MP either way. The detailed analysis of the distribution functions shows that the reconnection site frequently moves relative to the spacecraft, but simultaneous measurements by two spacecraft on opposite sides of the reconnection site indicate that the spacecraft's distance from the X line is small, i.e., below 3200 km. The vicinity to the X line throughout the event is probably the reason why the distribution functions characteristics agree with theoretical expectations on both sides of the reconnection site throughout this long event. Moreover, the detailed analysis of the distribution functions shows evidence, during a few time intervals, of dual reconnection, i.e., of reconnection simultaneously going on also in the northern hemisphere.
  •  
8.
  • Dimmock, Andrew P., et al. (författare)
  • Direct evidence of nonstationary collisionless shocks in space plasmas
  • 2019
  • Ingår i: Science Advances. - : AMER ASSOC ADVANCEMENT SCIENCE. - 2375-2548. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Collisionless shocks are ubiquitous throughout the universe: around stars, supernova remnants, active galactic nuclei, binary systems, comets, and planets. Key information is carried by electromagnetic emissions from particles accelerated by high Mach number collisionless shocks. These shocks are intrinsically nonstationary, and the characteristic physical scales responsible for particle acceleration remain unknown. Quantifying these scales is crucial, as it affects the fundamental process of redistributing upstream plasma kinetic energy into other degrees of freedom-particularly electron thermalization. Direct in situ measurements of nonstationary shock dynamics have not been reported. Thus, the model that best describes this process has remained unknown. Here, we present direct evidence demonstrating that the transition to nonstationarity is associated with electron-scale field structures inside the shock ramp.
  •  
9.
  • Duan, Suping, et al. (författare)
  • Oxygen Ions O+ Energized by Kinetic Alfven Eigenmode During Dipolarizations of Intense Substorms
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 122:11, s. 11256-11273
  • Tidskriftsartikel (refereegranskat)abstract
    • Singly charged oxygen ions, O+, energized by kinetic Alfven wave eigenmode (KAWE) in the plasma sheet boundary layer during dipolarizations of two intense substorms, 10: 07 UT on 31 August 2004 and 18: 24 UT on 14 September 2004, are investigated by Cluster spacecraft in the magnetotail. It is found that after the beginning of the expansion phase of substorms, O+ ions are clearly energized in the direction perpendicular to the magnetic field with energy larger than 1 keV in the near-Earth plasma sheet during magnetic dipolarizations. The pitch angle distribution of these energetic O+ ions is significantly different from that of O+ ions with energy less than 1 keV before substorm onset that is in the quasi-parallel direction along the magnetic field. The KAWE with the large perpendicular unipolar electric field, E-z similar to -20 mV/m, significantly accelerates O+ ions in the direction perpendicular to the background magnetic field. We present good evidences that O+ ion origin from the ionosphere along the magnetic field line in the northward lobe can be accelerated in the perpendicular direction during substorm dipolarizations. The change of the move direction of O+ ions is useful for O+ transferring from the lobe into the central plasma sheet in the magnetotail. Thus, KAWE can play an important role in O+ ion transfer process from the lobe into the plasma sheet during intense substorms.
  •  
10.
  • Eastwood, J.P., et al. (författare)
  • Multi-point observations of the Hall electromagnetic field and secondary island formation during magnetic reconnection
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:A6, s. A06235-
  • Tidskriftsartikel (refereegranskat)abstract
    • A key feature of collisionless magnetic reconnection is the formation of Hall magnetic and electric field structure in the vicinity of the diffusion region. Here we present multi‐point Cluster observations of a reconnection event in the near‐Earth magnetotail where the diffusion region was nested by the Cluster spacecraft; we compare observations made simultaneously by different spacecraft on opposite sides of the magnetotail current sheet. This allows the spatial structure of both the electric and magnetic field to be probed. It is found that, close to the diffusion region, the magnetic field displays a symmetric quadrupole structure. The Hall electric field is symmetric, observed to be inwardly directed on both sides of the current sheet. It is large (∼40 mV m−1) on the earthward side of the diffusion region, but substantially weaker on the tailward side, suggesting a reduced reconnection rate reflected by a similar reduction in Ey. A small‐scale magnetic flux rope was observed in conjunction with these observations. This flux rope, observed very close to the reconnection site and entrained in the plasma flow, may correspond to what have been termed secondary islands in computer simulations. The core magnetic field inside the flux rope is enhanced by a factor of 3, even though the lobe guide field is negligible. Observations of the electric field inside the magnetic island show extremely strong (∼100 mV m−1) fields which may play a significant role in the particle dynamics during reconnection.
  •  
11.
  • Engwall, Erik, 1977-, et al. (författare)
  • Low-energy (order 10 eV) ion flow in the magnetotail lobes inferred from spacecraft wake observations
  • 2006
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union. - 0094-8276 .- 1944-8007. ; 33, s. L06110-1-L06110-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold ionospheric ions with eV energies are common inthe magnetosphere and can travel far out in the magnetotail.However, they are difficult to measure with conventional ionspectrometers mounted on spacecraft, since the potential of asunlit spacecraft often reaches several tens of volts. In thispaper we present two alternative methods of measuring thecold-ion flow with the Cluster spacecraft and apply them onone case in the magnetotail at 18 RE: 1. Ion spectrometer incombination with artificial spacecraft potential control;2. Deriving ion flow velocity (both perpendicular andparallel) from electric field instruments. The secondmethod takes advantage of the effect on the doubleprobeinstrument of the wake formed behind a spacecraftin a plasma flow. The results from the two methods showgood agreement and are also consistent with polar windmodels and previous measurements at lower altitudes,confirming the continuation of low-energy ion outflows.
  •  
12.
  • Forsyth, C., et al. (författare)
  • Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117:12, s. A12203-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modeling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multispacecraft observations from Cluster, we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations, and we use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500 V, and that the majority of the potential drop was below C3. Assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous single- and multispacecraft observations.
  •  
13.
  • Gamier, P., et al. (författare)
  • Deriving the characteristics of warm electrons (100-500 eV) in the magnetosphere of Saturn with the Cassini Langmuir probe
  • 2014
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 104, s. 173-184
  • Tidskriftsartikel (refereegranskat)abstract
    • Though Langmuir probes (LP) are designed to investigate cold plasma regions (e.g. ionospheres), a recent analysis revealed a strong sensitivity of the Cassini LP measurements to hundreds of eV electrons. These warm electrons impact the surface of the probe and generate a significant current of secondary electrons, that impacts both the DC level and the slope of the current-voltage curve of the LP (for negative potentials) through energetic contributions that may be modeled with a reasonable precision. We show here how to derive information about the incident warm electrons from the analysis of these energetic contributions, in the regions where the cold plasma component is small with an average temperature in the range similar to [100-500] eV. First, modeling the energetic contributions (based on the incident electron flux given by a single anode of the CAPS spectrometer) allows us to provide information about the pitch angle anisotropies of the incident hundreds of eV electrons. The modeling reveals indeed sometimes a large variability of the estimated maximum secondary electron yield (which is a constant for a surface material) needed to reproduce the observations. Such dispersions give evidence for strong pitch angle anisotropies of the incident electrons, and using a functional form of the pitch angle distribution even allows us to derive the real peak angle of the distribution. Second, rough estimates of the total electron temperature may be derived in the regions where the warm electrons are dominant and thus strongly influence the LP observations, i.e. when the average electron temperature is in the range similar to [100-500] eV. These regions may be identified from the LP observations through large positive values of the current-voltage slope at negative potentials. The estimated temperature may then be used to derive the electron density in the same region, with estimated densities between similar to 0.1 and a few particles/cm(3) (cc). The derived densities are in better agreement with the CAPS measurements than the values derived from the proxy technique (Morooka et al., 2009) based on the floating potential of the LP. Both the electron temperature and the density estimates lie outside the classical capabilities of the LP, which are essentially n(e) > 5 cc and T-e <5 eV at Saturn. This approximate derivation technique may be used in the regions where the cold plasma component is small with an average temperature in the range similar to [100-500] eV, which occurs often in the L range 6.4-9.4 R-S when Cassini is off the equator, but may occur anywhere in the magnetosphere. This technique may be all the more interesting since the CAPS instrument was shut down, and, though it cannot replace the CAPS instrument, the technique can provide useful information about the electron moments, with probably even better estimates than CAPS in some cases (when the plasma is strongly anisotropic). Finally, a simple modeling approach allows us to predict the impact of the energetic contributions on LP measurements in any plasma environment whose characteristics (density, temperature, etc.) are known. LP observations may thus be influenced by warm electrons in several planetary plasma regions in the solar system, and ambient magnetospheric electron density and temperature could be estimated in some of them (e.g. around several galilean satellites) through the use of Langmuir probes.
  •  
14.
  • Garnier, P., et al. (författare)
  • Statistical analysis of the energetic ion and ENA data for the Titan environment
  • 2010
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 58:14-15, s. 1811-1822
  • Tidskriftsartikel (refereegranskat)abstract
    • The MIMI experiment (Magnetosphere Imaging Instrument) onboard Cassini is dedicated to the study of energetic particles, with in particular LEMMS analyzing charged particles, or the INCA detector which can image the Energetic Neutral Atoms produced by charge exchange collisions between cold neutrals and energetic ions. The MIMI experiment is thus well adapted to the study of the interaction between the Titan nitrogen rich atmosphere and the energetic Saturnian magnetospheric plasma. We analyze here the energetic protons at the Titan orbit crossings before January 2008 (MIMI-LEMMS data; 27-255 key), which are very dynamic, with tri-modal flux spectra and probably quasi-isotropic pitch angle distributions. We provide statistical parameters for the proton fluxes, leading to estimates of the average energy deposition into Titan's atmosphere, before we discuss the possible influence of Titan on the magnetopause. We then analyze the H ENA images (24-55 key) during the Titan flybys before June 2006 to obtain a better diagnostic of the Titan interaction: the ENAs variability is mostly related to the magnetospheric variability (the exosphere being roughly stable) or the distance from the moon, the ENAs halo around Titan is very stable (corresponding to a lower limit for ENAs emission at the exobase), and strong asymmetries are observed, due to finite gyroradii effects for the parent ions.
  •  
15.
  • Garnier, Philippe, et al. (författare)
  • The influence of the secondary electrons induced by energetic electrons impacting the Cassini Langmuir probe at Saturn
  • 2013
  • Ingår i: Journal of geophysical research Space Physics. - 2169-9402. ; 118:11, s. 7054-7073
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cassini Langmuir Probe (LP) onboard the Radio and Plasma Wave Science experiment has provided much information about the Saturnian cold plasma environment since the Saturn Orbit Insertion in 2004. A recent analysis revealed that the LP is also sensitive to the energetic electrons (250–450 eV) for negative potentials. These electrons impact the surface of the probe and generate a current of secondary electrons, inducing an energetic contribution to the DC level of the current-voltage (I-V) curve measured by the LP. In this paper, we further investigated this influence of the energetic electrons and (1) showed how the secondary electrons impact not only the DC level but also the slope of the (I-V) curve with unexpected positive values of the slope, (2) explained how the slope of the (I-V) curve can be used to identify where the influence of the energetic electrons is strong, (3) showed that this influence may be interpreted in terms of the critical and anticritical temperatures concept detailed by Lai and Tautz (2008), thus providing the first observational evidence for the existence of the anticritical temperature, (4) derived estimations of the maximum secondary yield value for the LP surface without using laboratory measurements, and (5) showed how to model the energetic contributions to the DC level and slope of the (I-V) curve via several methods (empirically and theoretically). This work will allow, for the whole Cassini mission, to clean the measurements influenced by such electrons. Furthermore, the understanding of this influence may be used for other missions using Langmuir probes, such as the future missions Jupiter Icy Moons Explorer at Jupiter, BepiColombo at Mercury, Rosetta at the comet Churyumov-Gerasimenko, and even the probes onboard spacecrafts in the Earth magnetosphere.
  •  
16.
  • Garnier, P., et al. (författare)
  • The lower exosphere of Titan : Energetic neutral atoms absorption and imaging
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A10, s. A10216-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Saturn magnetosphere interacts with the Titan atmosphere through various mechanisms. One of them leads, by charge exchange reactions between the energetic Saturnian ions and the exospheric neutrals of Titan, to the production of energetic neutral atoms (ENAs). The Ion and Neutral Camera (INCA), one of the three sensors that comprise the Magnetosphere Imaging Instrument (MIMI) on the Cassini/Huygens mission to Saturn and Titan, images the ENA emissions in the Saturnian magnetosphere. This study focuses on the ENA imaging of Titan (for 20-50 keV H ENAs), with the example of the Ta Titan flyby (26 October 2004): our objective is to understand the positioning of the ENA halo observed around Titan. Thus we investigate the main ENA loss mechanisms, such as the finite gyroradii effects for the parent ions, or the charge stripping with exospheric neutrals. We show that multiple stripping and charge exchange reactions have to be taken into account to understand the ENA dynamics. The use of an analytical approach, taking into account these reactions, combined with a reprocessing of the INCA data, allows us to reproduce the ENA images of the Ta flyby and indicates a lower limit for ENA emission around the exobase. However, the dynamics of energetic particle through the Titan atmosphere remains complex, with an inconsistency between the ENA imaging at low and high altitudes.
  •  
17.
  • Gunell, H., et al. (författare)
  • Plasma penetration of the dayside magnetopause
  • 2012
  • Ingår i: Physics of Plasmas. - Melville, NY : AIP Publishing. - 1070-664X .- 1089-7674. ; 19:7, s. 072906-
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the Cluster spacecraft during their magnetopause crossing on 25 January 2002 are presented. The magnetopause was in a state of slow non-oscillatory motion during the observational period. Coherent structures of magnetosheath plasma, here typified as plasmoids, were seen on closed magnetic field lines on the inside of the magnetopause. Using simultaneous measurements on two spacecraft, the inward motion of the plasmoids is followed from one spacecraft to the next, and it is found to be in agreement with the measured ion velocity. The plasma characteristics and the direction of motion of the plasmoids show that they have penetrated the magnetopause, and the observations are consistent with the concept of impulsive penetration, as it is known from theory, simulations, and laboratory experiments. The mean flux across the magnetopause observed was 0.2%-0.5% of the solar wind flux at the time, and the peak values of the flux inside the plasmoids reached approximately 20% of the solar wind flux.
  •  
18.
  • Gunell, H., et al. (författare)
  • Waves in high-speed plasmoids in the magnetosheath and at the magnetopause
  • 2014
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 32:8, s. 991-1009
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmoids, defined here as plasma entities with a higher anti-sunward velocity component than the surrounding plasma, have been observed in the magnetosheath in recent years. During the month of March 2007 the Cluster spacecraft crossed the magnetopause near the subsolar point 13 times. Plasmoids with larger velocities than the surrounding magnetosheath were found on seven of these 13 occasions. The plasmoids approach the magnetopause and interact with it. Both whistler mode waves and waves in the lower hybrid frequency range appear in these plasmoids, and the energy density of the waves inside the plasmoids is higher than the average wave energy density in the magnetosheath. When the spacecraft are in the magnetosphere, Alfvenic waves are observed. Cold ions of ionospheric origin are seen in connection with these waves, when the wave electric and magnetic fields combine with the Earth's dc magnetic field to yield an E x B/B-2 drift speed that is large enough to give the ions energies above the detection threshold.
  •  
19.
  • Hamrin, Maria, et al. (författare)
  • Energy conversion regions as observed by Cluster in the plasma sheet
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A00K08-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article we present a review of recent studies of observations of localized energy conversion regions (ECRs) observed by Cluster in the plasma sheet at altitudes of 15-20R(E). By examining variations in the power density, E . J, where E is the electric field and J is the current density, we show that the plasma sheet exhibits a high level of fine structure. Approximately three times as many concentrated load regions (CLRs) (E . J > 0) as concentrated generator regions (CGRs) (E . J < 0) are identified, confirming the average load character of the plasma sheet. Some ECRs are found to relate to auroral activity. While ECRs are relevant for the energy conversion between the electromagnetic field and the particles, bursty bulk flows (BBFs) play a central role for the energy transfer in the plasma sheet. We show that ECRs and BBFs are likely to be related, although details of this relationship are yet to be explored. The plasma sheet energy conversion increases rather simultaneously with increasing geomagnetic activity in both CLRs and CGRs. Consistent with large-scale magnetotail simulations, most of the observed ECRs appear to be rather stationary in space but varying in time. We estimate that the ECR lifetime and scale size are a few minutes and a few R(E), respectively. It is conceivable that ECRs rise and vanish locally in significant regions of the plasma sheet, possibly oscillating between load and generator character, while some energy is transmitted as Poynting flux to the ionosphere.
  •  
20.
  • Hamrin, Maria, et al. (författare)
  • Evidence for the braking of flow bursts as they propagate toward the Earth
  • 2014
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 119:11, s. 9004-9018
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article we use energy conversion arguments to investigate the possible braking of flow bursts as they propagate toward the Earth. By using EJ data (E and J are the electric field and the current density) observed by Cluster in the magnetotail plasma sheet, we find indications of a plasma deceleration in the region -20 R-E < X < - 15 R-E. Our results suggest a braking mechanism where compressed magnetic flux tubes in so-called dipolarization fronts (DFs) can decelerate incoming flow bursts. Our results also show that energy conversion arguments can be used for studying flow braking and that the position of the flow velocity peak with respect to the DF can be used as a single-spacecraft proxy when determining energy conversion properties. Such a single-spacecraft proxy is invaluable whenever multispacecraft data are not available. In a superposed epoch study, we find that a flow burst with the velocity peak behind the DF is likely to decelerate and transfer energy from the particles to the fields. For flow bursts with the peak flow at or ahead of the DF we see no indications of braking, but instead we find an energy transfer from the fields to the particles. From our results we obtain an estimate of the magnitude of the deceleration of the flow bursts, and we find that it is consistent with previous investigations.
  •  
21.
  • Hamrin, Maria, 1972-, et al. (författare)
  • Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:11, s. 4131-4146
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, and in a companion paper by Hamrin et al. (2009) [Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in the Earth's plasma sheet. In total we have studied 151 ECRs within 660 h of plasma sheet data from the summer and fall of 2001 when Cluster was close to apogee at an altitude of about 15-20RE. Cluster offers appropriate conditions for the investigation of energy conversion by the evaluation of the power density, E.J, where E is the electric field and J the current density. From the sign of the power density, we have identified more than three times as many Concentrated Load Regions (CLRs) as Concentrated Generator Regions (CGRs). We also note that the CLRs appear to be stronger. To our knowledge, these are the first in situ observations confirming the general notion of the plasma sheet, on the average, behaving as a load. At the same time the plasma sheet appears to be highly structured, with energy conversion occurring in both directions between the fields and the particles. From our data we also find that the CLRs appear to be located closer to the neutral sheet, while CGRs prefer locations towards the plasma sheet boundary layer (PSBL). For both CLRs and CGRs, E and J in the GSM y (cross-tail) direction dominate the total power density, even though the z contribution occasionally can be significant. The prevalence of the y-direction seems to be weaker for the CGRs, possibly related to a higher fluctuation level near the PSBL.
  •  
22.
  • Hamrin, Maria, 1972-, et al. (författare)
  • Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:11, s. 4147-4155
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, and in a companion paper by Hamrin et al. (2009) [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data) at the altitude of about 15-20 R-E in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs) and 35 Concentrated Generator Regions (CGRs). By examining variations in the power density, E.J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 R-E less than or similar to Delta 1 S-ECR less than or similar to 5 R-E. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1-10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005). The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1-10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.
  •  
23.
  • Hamrin, Maria, et al. (författare)
  • The evolution of flux pileup regions in the plasma sheet : Cluster observations
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-9380 .- 2169-9402. ; 118:10, s. 6279-6290
  • Tidskriftsartikel (refereegranskat)abstract
    • Bursty bulk flows (BBFs) play an important role for the mass, energy, and magnetic flux transport in the plasma sheet, and the flow pattern in and around a BBF has important consequences for the localized energy conversion between the electromagnetic and plasma mechanical energy forms. The plasma flow signature in and around BBFs is often rather complicated. Return flows and plasma vortices are expected to exist at the flanks of the main flow channel, especially near the inner plasma sheet boundary, but also farther down-tail. A dipolarization front (DF) is often observed at the leading edge of a BBF, and a flux pileup region (FPR) behind the DF. Here we present Cluster data of three FPRs associated with vortex flows observed in the midtail plasma sheet on 15 August 2001. According to the principles of Fu et al. (2011, 2012c), two of the FPRs are considered to be in an early stage of evolution (growing FPRs). The third FPR is in a later stage of evolution (decaying FPR). For the first time, the detailed energy conversion properties during various stages of the FPR evolution have been measured. We show that the later stage FPR has a more complex vortex pattern than the two earlier stage FPRs. The two early stage FPR correspond to generators, EJ<0, while the later stage FPR only shows weak generator characteristics and is instead dominated by load signatures at the DF, EJ>0. Moreover, to our knowledge, this is one of the first times BBF-related plasma vortices have been observed to propagate over the spacecraft in the midtail plasma sheet at geocentric distances of about 18R(E). Our observations are compared to recent simulation results and previous observations.
  •  
24.
  • Hamrin, Maria, et al. (författare)
  • The role of the inner tail to midtail plasma sheet in channeling solar wind power to the ionosphere
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117:A6, s. A06310-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article we use Cluster power density (E . J) data from 2001, 2002, and 2004 to investigate energy conversion and transfer in the plasma sheet. We show that a southward IMF B-z is favorable for plasma sheet energy conversion, and that there is an increased particle and Poynting flux toward the Earth at times when Cluster observes an enhanced energy conversion in the plasma sheet. Conversion from electromagnetic to kinetic energy is increasingly dominant farther down-tail, while the generation of electromagnetic power from kinetic energy becomes important toward the Earth with a maximum at roughly 10 R-E. By linking observations of the key quantity E . J to observations of the solar wind input and earthward energy flux, our results demonstrate the role of the inner tail to midtail plasma sheet as a mediator between the solar wind energy input into the magnetosphere and the auroral dissipation in the ionosphere.
  •  
25.
  • Hietala, H., et al. (författare)
  • Supermagnetosonic subsolar magnetosheath jets and their effects : from the solar wind to the ionospheric convection
  • 2012
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 30:1, s. 33-48
  • Tidskriftsartikel (refereegranskat)abstract
    • It has recently been proposed that ripples inherent to the bow shock during radial interplanetary magnetic field (IMF) may produce local high speed flows in the magnetosheath. These jets can have a dynamic pressure much larger than the dynamic pressure of the solar wind. On 17 March 2007, several jets of this type were observed by the Cluster spacecraft. We study in detail these jets and their effects on the magnetopause, the magnetosphere, and the ionospheric convection. We find that (1) the jets could have a scale size of up to a few RE but less than similar to 6 R-E transverse to the XGSE axis; (2) the jets caused significant local magnetopause perturbations due to their high dynamic pressure; (3) during the period when the jets were observed, irregular pulsations at the geostationary orbit and localised flow enhancements in the ionosphere were detected. We suggest that these inner magnetospheric phenomena were caused by the magnetosheath jets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy