SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Darakchieva Vanya) "

Sökning: WFRF:(Darakchieva Vanya)

  • Resultat 1-25 av 205
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Armakavicius, Nerijus, et al. (författare)
  • Cavity-enhanced optical Hall effect in epitaxial graphene detected at terahertz frequencies
  • 2017
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 421, s. 357-360
  • Tidskriftsartikel (refereegranskat)abstract
    • Cavity-enhanced optical Hall effect at terahertz (THz) frequencies is employed to determine the free charge carrier properties in epitaxial graphene (EG) with different number of layers grown by high-temperature sublimation on 4H-SiC(0001). We find that one monolayer (ML) EG possesses p-type conductivity with a free hole concentration in the low 1012 cmᅵᅵᅵ2 range and a free hole mobility parameter as high as 1550 cm2/Vs. We also find that 6 ML EG shows n-type doping behavior with a much lower free electron mobility parameter of 470 cm2/Vs and an order of magnitude higher free electron density in the low 1013 cmᅵᅵᅵ2 range. The observed differences are discussed. The cavity-enhanced THz optical Hall effect is demonstrated to be an excellent tool for contactless access to the type of free charge carriers and their properties in two-dimensional materials such as EG.
  •  
2.
  • Armakavicius, Nerijus, 1989-, et al. (författare)
  • Electron effective mass in GaN revisited: New insights from terahertz and mid-infrared optical Hall effect
  • 2024
  • Ingår i: APL Materials. - : AIP Publishing. - 2166-532X. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron effective mass is a fundamental material parameter defining the free charge carrier transport properties, but it is very challenging to be experimentally determined at high temperatures relevant to device operation. In this work, we obtain the electron effective mass parameters in a Si-doped GaN bulk substrate and epitaxial layers from terahertz (THz) and mid-infrared (MIR) optical Hall effect (OHE) measurements in the temperature range of 38-340 K. The OHE data are analyzed using the well-accepted Drude model to account for the free charge carrier contributions. A strong temperature dependence of the electron effective mass parameter in both bulk and epitaxial GaN with values ranging from (0.18 +/- 0.02) m(0) to (0.34 +/- 0.01) m(0) at a low temperature (38 K) and room temperature, respectively, is obtained from the THz OHE analysis. The observed effective mass enhancement with temperature is evaluated and discussed in view of conduction band nonparabolicity, polaron effect, strain, and deviations from the classical Drude behavior. On the other hand, the electron effective mass parameter determined by MIR OHE is found to be temperature independent with a value of (0.200 +/- 0.002) m(0). A possible explanation for the different findings from THz OHE and MIR OHE is proposed. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
  •  
3.
  • Armakavicius, Nerijus, et al. (författare)
  • Electron effective mass in In0.33Ga0.67N determined by mid-infrared optical Hall effect
  • 2018
  • Ingår i: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 112:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Mid-infrared optical Hall effect measurements are used to determine the free charge carrier parameters of an unintentionally doped wurtzite-structure c-plane oriented In0.33Ga0.67N epitaxial layer. Room temperature electron effective mass parameters of m(perpendicular to)* = (0.205 +/- 0.013) m(0) and m(parallel to)* = (0.204 +/- 0.016) m(0) for polarization perpendicular and parallel to the c-axis, respectively, were determined. The free electron concentration was obtained as (1.7 +/- 0.2) x 10(19) cm(-3). Within our uncertainty limits, we detect no anisotropy for the electron effective mass parameter and we estimate the upper limit of the possible effective mass anisotropy as 7%. We discuss the influence of conduction band nonparabolicity on the electron effective mass parameter as a function of In content. The effective mass parameter is consistent with a linear interpolation scheme between the conduction band mass parameters in GaN and InN when the strong nonparabolicity in InN is included. The In0.33Ga0.67N electron mobility parameter was found to be anisotropic, supporting previous experimental findings for wurtzite-structure GaN, InN, and AlxGa1-xN epitaxial layers with c-plane growth orientation. Published by AIP Publishing.
  •  
4.
  • Armakavicius, Nerijus, 1989- (författare)
  • Free charge carrier properties in group III nitrides and graphene studied by THz-to-MIR ellipsometry and optical Hall effect
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Development of silicon based electronics have revolutionized our every day life during the last five decades. Nowadays silicon based devices operate close to their theoretical limits that is becoming a bottleneck for further progress. In particular, for the growing field of high frequency and high power electronics, silicon cannot offer the required properties. Development of materials capable of providing high current densities, carrier mobilities and high breakdown fields is crucial for further progress in state of the art electronics.Epitaxial graphene grown on semi-insulating silicon carbide substrates has a high potential to be integrated in current planar device technologies. High electron mobilities and sheet carrier densities make graphene extremely attractive for high frequency analog applications. One of the remaining challenges is the interaction of epitaxial graphene with the substrate. Typically, much lower free charge carrier mobilities, compared to free standing graphene, and doping, due to charge transfer from the substrate, is reported. Thus, a good understanding of the intrinsic free charge carriers properties and the factors affecting them is very important for further development of epitaxial graphene.Group III-nitrides have been extensively studied and already have proven their high efficiency as light emitting diodes for short wavelengths. High carrier mobilities and breakdown electric fields were demonstrated for group III-nitrides, making them attractive for high frequency and high power applications. Currently, In-rich InGaN alloys and AlGaN/GaN high electron mobility structures are of high interest for the research community due to open fundamental questions such as free charge carrier properties at high temperatures and wavefunction hybridization in AlGaN/GaN heterostructures.Electrical characterization techniques, commonly used for the determination of free charge carrier properties, require good ohmic and Schottky contacts, which in certain cases can be difficult to achieve. Access to electrical properties of buried conductive channels in multilayered structures requires modification of samples and good knowledge of the electrical properties of all electrical junctions within the structure. Moreover, the use of contacts to electrically characterize two-dimensional electronic materials, such as graphene, can alter their intrinsic properties. Furthermore, the determination of effective mass parameters commonly employs cyclotron resonance and Shubnikov-de Haas oscillations measurements, which require long scattering times of free charge carriers, high magnetic fields and low temperatures.The optical Hall effect is an external magnetic-field induced birefringence of conductive layers due to the free charge carriers interaction with long-wavelength electromagnetic waves under the influence of the Lorentz force. The optical Hall effect can be measured by generalized ellipsometry and provides a powerful method for the determination of free charge carrier properties in a non-destructive and contactless manner. The optical Hall effect measurements can provide quantitative information about free charge carrier type, concentration, mobility and effective mass parameters at temperatures ranging from few kelvins to room temperature and above. It further allows to differentiate the free charge carrier properties of individual layers in multilayer samples. The employment of a backside cavity for transparent samples can enhance the optical Hall effect and allows to access free charge carrier properties at relatively low magnetic fields using permanent magnet.The optical Hall effect measurements at mid-infrared spectral range can be used to probe quantum mechanical phenomena such as Landau levels in graphene. The magnetic field dependence of the inter-Landau level transition energies and optical polarization selection rules provide information about coupling properties between graphene layers and the electronic band structure.Measurement of the optical Hall effect by generalized ellipsometry is an indirect technique requiring subsequent data analysis. Parameterized optical models are fitted to match experimentally measured ellipsometric spectra by varying physically significant model parameters. Analysis of the generalized ellipsometry data at long wavelengths for samples containing free charge carriers by optical models based on the classical Drude formulation, augmented with an external magnetic field contribution, allows to extract carrier concentration, mobility and effective mass parameters.The development of the integrated FIR and THz frequency-domain ellipsometer at the Terahertz Materials Analysis Center in Linköping University was part of the graduate studies presented in this dissertation. The THz ellipsometer capabilities are demonstrated by determination of Si and sapphire optical constants, and free charge carrier properties of two-dimensional electron gas in GaN-based high electron mobility transistor structures. The THz ellipsometry is further shown to be capable of determining free charge carrier properties and following their changes upon variation of ambient conditions in atomically thin layers with an example of epitaxial graphene.A potential of the THz OHE with the cavity enhancement (THz-CE-OHE) for determination of the free charge carrier properties in atomically thin layers were demonstrated by the measurements of the carrier properties in monolayer and multilayer epitaxial graphene on Si-face 4H-SiC. The data analysis revealed p-type doping for monolayer graphene with a carrier density in the low 1012 cm-2 range and a carrier mobility of 1550 cm2V-1s-1. For the multilayer graphene, n-type doping with a carrier density in the low 1013 cm-2 range, a mobility of 470 cm2V-1s-1 and an effective mass of (0.14 ± 0.03)m0 were extracted. Different type of doping among monolayer and multilayer graphene is explained as a result of different hydrophobicity among samples.Further, we have employed THz-CE-OHE to determine for the first time anisotropic mobility parameter in quasi-free-standing bilayer epitaxial graphene induced by step-like surface morphology of 4H-SiC. Correlation of atomic force microscopy, Raman scattering spectroscopy, scanning probe Kelvin probe microscopy, low energy electron microscopy and diffraction analysis allows us to investigate the possible scattering mechanisms and suggests that anisotropic mobility is induced by varying local mobility parameter due to interaction between graphene and underlaying substrate.The origin of the layers decoupling in multilayer graphene on C-face 4H-SiC was studied by MIR-OHE, transmission electron microscopy and electron energy loss spectroscopy. The results revealed the decoupling of the layers induced by the increased interlayer spacing which is attributed to the Si atoms trapped between graphene layers.MIR ellipsometry and MIR-OHE measurements were employed to determine the electron effective mass in a wurtzite In0.33Ga0.67N epitaxial layer. The data analysis revealed the effective mass parameters parallel and perpendicular to the c-axis which can be considered as equal within sensitivity of our measurements. The determined effective mass is consistent with linear dependence on the In content.Analysis of the free charge carrier properties in AlGaN/GaN high electron mobility structures with modified interfaces showed that AlGaN/GaN interface structure has a significant effect on the mobility parameter. A sample with a sharp interface layers exhibits a record mobility of 2332 ± 73 cm2V-1s-1. The determined effective mass parameters showed an increase compared to the bulk GaN value, which is attributed to the penetration of the electron wavefunction into the AlGaN barrier layer.Temperature dependence of free charge carrier properties in GaN-based high electron mobility transistor structures with AlGaN and InAlN barrier layers were measured by terahertz optical Hall effect technique in a temperature range from 7.2 K to 398 K. The results revealed strong changes in the effective mass and mobility parameters. At temperatures below 57 K very high carrier mobility parameters above 20000 cm2V-1s-1 for AlGaN-barrier sample and much lower mobilities of ~ 5000 cm2V-1s-1 for InAlN-barrier sample were obtained. At low temperatures the effective mass parameters for both samples are very similar to bulk GaN value, while at temperatures above 131 K effective mass shows a strong increase with temperature. The effective masses of 0.344 m0 (@370 K) and 0.439 m0 (@398 K) were obtained for AlGaN- and InAlN-barrier samples, respectively. We discussed the possible origins of effective mass enhancement in high electron mobility transistor structures.  
  •  
5.
  • Armakavicius, Nerijus, et al. (författare)
  • Properties of two-dimensional electron gas in AlGaN/GaN HEMT structures determined by cavity-enhanced THz optical Hall effect
  • 2016
  • Ingår i: Physica Status Solidi C-Current Topics in Solid State Physics, Vol 13 No 5-6. - : Wiley-VCH Verlagsgesellschaft. ; , s. 369-373
  • Konferensbidrag (refereegranskat)abstract
    • In this work we employ terahertz (THz) ellipsometry to determine two-dimensional electron gas (2DEG) density, mobility and effective mass in AlGaN/GaN high electron mobility transistor structures grown on 4H-SiC substrates. The effect of the GaN interface exposure to low-flow-rate trimethylaluminum (TMA) on the 2DEG properties is studied. The 2DEG effective mass and sheet density are determined tobe in the range of 0.30-0.32m0 and 4.3-5.5×1012 cm–2, respectively. The 2DEG effective mass parameters are found to be higher than the bulk effective mass of GaN, which is discussed in view of 2DEG confinement. It is shown that exposure to TMA flow improves the 2DEG mobility from 2000 cm2/Vs to values above 2200 cm2/Vs. A record mobility of 2332±61 cm2/Vs is determined for the sample with GaN interface exposed to TMA for 30 s. This improvement in mobility is suggested to be due to AlGaN/GaN interface sharpening causing the reduction of interface roughness scattering of electrons in the 2DEG.
  •  
6.
  • Armakavicius, Nerijus, et al. (författare)
  • Resolving mobility anisotropy in quasi-free-standing epitaxial graphene by terahertz optical Hall effect
  • 2021
  • Ingår i: Carbon. - : Elsevier BV. - 0008-6223 .- 1873-3891. ; 172, s. 248-259
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we demonstrate the application of terahertz-optical Hall effect (THz-OHE) to determine directionally dependent free charge carrier properties of ambient-doped monolayer and quasi-free-standing-bilayer epitaxial graphene on 4H–SiC(0001). Directionally independent free hole mobility parameters are found for the monolayer graphene. In contrast, anisotropic hole mobility parameters with a lower mobility in direction perpendicular to the SiC surface steps and higher along the steps in quasi-free-standing-bilayer graphene are determined for the first time. A combination of THz-OHE, nanoscale microscopy and optical spectroscopy techniques are used to investigate the origin of the anisotropy. Different defect densities and different number of graphene layers on the step edges and terraces are ruled out as possible causes. Scattering mechanisms related to doping variations at the step edges and terraces as a result of different interaction with the substrate and environment are discussed and also excluded. It is suggested that the step edges introduce intrinsic scattering in quasi-free-standing-bilayer graphene, that is manifested as a result of the higher ratio between mean free path and average terrace width parameters. The suggested scenario allows to reconcile existing differences in the literature regarding the anisotropic electrical transport in epitaxial graphene.
  •  
7.
  • Armakavicius, Nerijus (författare)
  • Study of novel electronic materials by mid-infrared and terahertz optical Hall effect
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Development of silicon based electronics have revolutionized our every day life during the last three decades. Nowadays Si based devices operate close to their theoretical limits that is becoming a bottleneck for further progress. In particular, for the growing field of high frequency and high power electronics, Si cannot offer the required properties. Development of materials capable of providing high current densities, carrier mobilities and high breakdown fields is crucial for a progress in state of the art electronics.Epitaxial graphene grown on semi-insulating silicon carbide substrates has a high potential to be integrated in the current planar device technologies. High electron mobilities and sheet carrier densities make graphene extremely attractive for high frequency analog applications. One of the remaining challenges is the interaction of epitaxial graphene with the substrate. Typically, much lower free charge carrier mobilities, compared to free standing graphene, and doping, due to charge transfer from the substrate, is reported. Thus, a good understanding of the intrinsic free charge carriers properties and the factors affecting them is very important for further development of epitaxial graphene.III-group nitrides have been extensively studied and already have proven their high efficiency as light sources for short wavelengths. High carrier mobilities and breakdown electric fields were demonstrated for III-group nitrides, making them attractive for high frequency and high power applications. Currently, In-rich InGaN alloys and AlGaN/GaN high electron mobility structures are of high interest for the research community due to open fundamental questions.Electrical characterization techniques, commonly used for the determination of free charge carrier properties, require good ohmic and Schottky contacts, which in certain cases can be difficult to achieve. Access to electrical properties of buried conductive channels in multilayered structures requires modification of samples and good knowledge of the electrical properties of all electrical contact within the structure. Moreover, the use of electrical contacts to electrically characterize two-dimensional electronic materials, such as graphene, can alter their intrinsic properties. Furthermore, the determination of effective mass parameters commonly employs cyclotron resonance and Shubnikov-de Haas oscillations measurements, which require long scattering times of free charge carriers, high magnetic fields and low temperatures.The optical Hall effect is an external magnetic field induced optical anisotropy in  conductive layers due to the motion of the free charge carriers under the influence of the Lorentz force, and is equivalent to the electrical Hall effect at optical frequencies. The optical Hall effect can be measured by generalized ellipsometry and provides a powerful method for the determination of free charge carrier properties in a non-destructive and contactless manner. In principle, a single optical Hall effect measurement can provide quantitative information about free charge carrier types, concentrations, mobilities and effective mass parameters at temperatures ranging from few kelvins to room temperature and above. Further, it was demonstrated that for transparent samples, a backside cavity can be employed to enhance the optical Hall effect.Measurement of the optical Hall effect by generalized ellipsometry is an indirect technique requiring subsequent data analysis. Parameterized optical models are fitted to match experimentally measured ellipsometric data by varying physically significant parameters. Analysis of the optical response of samples, containing free charge carriers, employing optical models based on the classical Drude model, which is augmented with an external magnetic field contribution, provide access to the free charge carrier properties.The main research results of the graduate studies presented in this licentiate thesis are summarized in the five scientific papers.Paper I. Description of the custom-built terahertz frequency-domain spectroscopic ellipsometer at Linköping University. The terahertz ellipsometer capabilities are demonstrated by an accurate determination of the isotropic and anisotropic refractive indices of silicon and m-plane sapphire, respectively. Further, terahertz optical Hall effect measurements of an AlGaN/GaN high electron mobility structures were employed to extract the two-dimensional electron gas sheet density, mobility and effective mass parameters. Last, in-situ optical Hall effect measurement on epitaxial graphene in a gas cell with controllable environment, were used to study the effects of environmental doping on the mobility and carrier concentration.Paper II. Presents terahertz cavity-enhanced optical Hall measurements of the monolayer and multilayer epitaxial graphene on semi-insulating 4H-SiC (0001) substrates. The data analysis revealed p-type doping for monolayer graphene with a carrier density in the low 1012 cm−2 range and a carrier mobility of 1550 cm2/V·s. For the multilayer epitaxial graphene, n-type doping with a carrier density in the low 1013 cm−2 range, a mobility of 470 cm2/V·s and an effective mass of (0.14 ± 0.03) m0 were extracted. The measurements demonstrate that cavity-enhanced optical Hall effect measurements can be applied to study electronic properties of two-dimensional materials.Paper III. Terahertz cavity-enhanced optical Hall effect measurements are employed to study anisotropic transport in as-grown monolayer, quasi free-standing monolayer and quasi free-standing bilayer epitaxial graphene on semi-insulating 4H-SiC (0001) substrates. The data analysis revealed a strong anisotropy in the carrier mobilities of the quasi freestanding bilayer graphene. The anisotropy is demonstrated to be induced by carriers scattering at the step edges of the SiC, by showing that the mobility is higher along the step than across them. The scattering mechanism is discussed based on the results of the optical Hall effect, low-energy electron microscopy, low-energy electron diffraction and Raman measurements.Paper IV. Mid-infrared spectroscopic ellipsometry and mid-infrared optical Hall effect measurements are employed to determine the electron effective mass in an In0.33Ga0.67N epitaxial layer. The data analysis reveals slightly anisotropic effective mass and carrier mobility parameters together with the optical phonon frequencies and broadenings.Paper V. Terahertz cavity-enhanced optical Hall measurements are employed to study the free charge carrier properties in a set of AlGaN/GaN high electron mobility structures with modified interfaces. The results show that the interface structure has a significant effect on the free charge carrier mobility and that the sample with a sharp interface between an AlGaN barrier and a GaN buffer layers exhibits a record mobility of 2332±73 cm2/V·s. The determined effective mass parameters showed an increase compared to the GaN value, that is attributed the the penetration of the electron wavefunction into the AlGaN barrier layer.
  •  
8.
  •  
9.
  • Ashkenov, N., et al. (författare)
  • Infrared dielectric functions and phonon modes of high-quality ZnO films
  • 2003
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 93:1, s. 126-133
  • Tidskriftsartikel (refereegranskat)abstract
    • A study was performed on the phonon modes and infrared dielectric functions of high-quality ZnO thin films. The pulsed laser deposition technique was used to deposit the ZnO films on c-plane sapphire substrates and were investigated by high-resolution transmission electron microscopy, high-resolution x-ray diffraction and Rutherford backscattering experiments. The accurate long-wavelength dielectric constant limits of the films were also obtained and were compared with near-band-gap index-of-refraction data upon the Lyddane-Sachs-Teller relation for both film and bulk samples. It was found that the phonon modes of the film were highly consistent with those of the bulk sample.
  •  
10.
  • Atanassov, A, et al. (författare)
  • Grazing incident asymmetric X-ray diffraction of beta-FeSi2 layers, produced by ion beam synthesis
  • 2004
  • Ingår i: Vacuum. - : Elsevier BV. - 0042-207X .- 1879-2715. ; 76:02-Mar, s. 277-280
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of beta-FeSi2 phase, prepared by ion beam synthesis (IBS) method, followed by rapid thermal annealing (RTA) is investigated by grazing incident asymmetric X-ray diffraction (GIAXRD). The X-ray spectra, obtained at different grazing angles, indicated that the beta-FeSi2 phase is formed in the whole implantation range. From the comparison of the reflections intensities ratios, it is found that in the metal-deficient regions, where the beta-FeSi2 phase is present in the form of precipitates, the crystallites orientation is influenced by the one of the silicon substrates, while the orientation in the metal-rich region is different and depends on the annealing temperature. (C) 2004 Elsevier Ltd. All rights reserved.
  •  
11.
  • Barradas, N. P., et al. (författare)
  • A Double Scattering Analytical Model For Elastic Recoil Detection Analysis
  • 2011
  • Ingår i: AIP Conference Proceedings, Volume 1336. - : AIP. - 9780735408913 ; , s. 314-318
  • Konferensbidrag (refereegranskat)abstract
    • We present an analytical model for calculation of double scattering in elastic recoil detection measurements. Only events involving the beam particle and the recoil are considered, i.e. 1) an ion scatters off a target element and then produces a recoil, and 2) an ion produces a recoil which then scatters off a target element. Events involving intermediate recoils are not considered, i.e. when the primary ion produces a recoil which then produces a second recoil. If the recoil element is also present in the stopping foil, recoil events in the stopping foil are also calculated. We included the model in the standard code for IBA data analysis NDF, and applied it to the measurement of hydrogen in Si.
  •  
12.
  • Ben Sedrine, Nebiha, et al. (författare)
  • Bandgap Engineering and Optical Constants of YxAl1-xN Alloys
  • 2013
  • Ingår i: Japanese Journal of Applied Physics. - : Japan Society of Applied Physics. - 0021-4922 .- 1347-4065. ; 52:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We study wurtzite Yx Al1-xN (0 andlt;= x andlt;= 0:22) films with (0001) orientation deposited by magnetron sputtering epitaxy on Si(100) substrates and we determine the alloys band gap energies and optical constants. Room temperature spectroscopic ellipsometry (SE) is employed in the energy range from 1 to 6.3 eV, and data modeling based on the standard dielectric function model is used. As a result of the SE data analysis the Yx Al1-xN refractive index and extinction coefficient are determined. The band gap of Yx Al1-xN is found to decrease linearly from 6.2 eV (x=0) down to 4.5 eV (x=0:22). We further observe an increase of the refractive index with increasing Y content; from 1.93 to 2.20 (at 2 eV) for x=0 and 0.22, respectively, reflecting the increase in material density.
  •  
13.
  • Ben Sedrine, N., et al. (författare)
  • Effect of nitrogen on the GaAs0.9-xNxSb0.1 dielectric function from the near-infrared to the ultraviolet
  • 2010
  • Ingår i: Applied Physics Letters. - : American Institute of Physics. - 0003-6951 .- 1077-3118. ; 97:20, s. 201903-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the effect of nitrogen on the GaAs0.9-xNxSb0.1 (x = 0.00, 0.65%, 1.06%, 1.45%, and 1.90%) alloy dielectric function by spectroscopic ellipsometry in the energy range from 0.73 to 4.75 eV. The compositional dependences of the critical points energies for the GaAs0.9-xNxSb0.1 are obtained. In addition to the GaAs intrinsic transitions E-1, E-1+ Delta(1), and E-0, the nitrogen-induced Gamma-point optical transitions E-0 and E+, together with a third transition E-#, are identified. We find that with increasing the N content, the E-0 transition shifts to lower energies while the E+ and (E)# transitions shift to higher energies. We suggest that the origin of the E-0, E+, and E-# transitions may be explained by the double band anticrossing (BAC) model, consisting of a conduction BAC model and a valence BAC model.
  •  
14.
  • Ben Sedrine, Nabiha, et al. (författare)
  • Infrared dielectric functions and optical phonons of wurtzite YxAl1-xN (0 less than= x less than= 0.22)
  • 2015
  • Ingår i: Journal of Physics D. - : IOP PUBLISHING LTD. - 0022-3727 .- 1361-6463. ; 48:41, s. 415102-
  • Tidskriftsartikel (refereegranskat)abstract
    • YAlN is a new member of the group-III nitride family with potential for applications in next generation piezoelectric and light emitting devices. We report the infrared dielectric functions and optical phonons of wurtzite (0001) YxAl1-xN epitaxial films with 0 less than= x less than= 0.22. The films are grown by magnetron sputtering epitaxy on c-plane Al2O3 and their phonon properties are investigated using infrared spectroscopic ellipsometry and Raman scattering spectroscopy. The infrared-active E-1(TO) and LO, and the Raman active E-2 phonons are found to exhibit one-mode behavior, which is discussed in the framework of the MREI model. The compositional dependencies of the E-1(TO), E-2 and LO phonon frequencies, the high-frequency limit of the dielectric constant, epsilon(infinity), the static dielectric constant, epsilon(0), and the Born effective charge Z(B) are established and discussed.
  •  
15.
  • Ben Sedrine, N, et al. (författare)
  • Optical properties of GaAs0.9-xNxSb0.1 alloy films studied by spectroscopic ellipsometry
  • 2011
  • Ingår i: THIN SOLID FILMS. - : ELSEVIER SCIENCE SA, PO BOX 564, 1001 LAUSANNE, SWITZERLAND. - 0040-6090. ; 519:9, s. 2838-2842
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectroscopic ellipsometry from 0.73 to 4.75 eV was used to study the optical properties of epitaxial GaAs0.9-xNxSb0.1 layers with x=0.00, 0.65, 1.06, 1.45 and 1.90%. The ellipsometric experimental spectra were fitted using a multilayer model employing the model dielectric function to describe the GaAs0.9-xNxSb0.1 optical response. We have identified the Gamma-point E-0, E+, and E-# transitions of GaAs0.9-xNxSb0.1 and have determined the effect of nitrogen on the respective transition energies. We have demonstrated that a lower N content can provide an equal E+-E-0 energy splitting for GaAs0.9-xNxSb0.1 with respect to GaAs1-xNx.
  •  
16.
  • Bittrich, Eva, et al. (författare)
  • Morphology of Thin Films of Aromatic Ellagic Acid and Its Hydrogen Bonding Interactions
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 124:30, s. 16381-16390
  • Tidskriftsartikel (refereegranskat)abstract
    • Ellagic acid (EA), an antioxidant from fruits or other plants, has recently evoked interest in the field of organic electronics because of its weak electron donor properties. In this work, the preparation of uniaxial pi-stacked EA films by thermal evaporation on different surfaces is reported for the first time. The (102) lattice plane of the pi-electron system was confirmed as the contact plane for one monolayer equivalent on Ag(111) by low-electron energy diffraction. X-ray and atomic force microscopy measurements revealed nanocrystalline grains with an average inplane size of 50 nm and considerably smaller average out-of-plane crystallite sizes (16-25 nm) in films of 16-75 nm thickness. The influence of different substrates was minor compared to the effect of the film thickness. An increase in the in-plane density of grains at larger film thicknesses was deduced from the trend in their uniaxial optical properties. Weak and strong intermolecular H-bonding interactions were identified in the EA crystal lattice, while a surplus of weak H-bonding was observed for the nanocrystallites in thin films, as compared to bulk EA. Finally, EA was coevaporated with the semiconducting thiophene molecule DCV4T-Et-2 to demonstrate principle interactions with a guest molecule by H-bonding analysis. Our results illustrate the feasibility of applying EA films as alignment layers for templating other semiconducting organic films used in organic electronic devices.
  •  
17.
  • Boosalis, Alexander, et al. (författare)
  • Spectroscopic Mapping Ellipsometry of Graphene Grown on 3C SiC
  • 2012
  • Ingår i: MRS Proceedings Volume 1407. - : Springer Science and Business Media LLC. ; , s. aa20-43
  • Konferensbidrag (refereegranskat)abstract
    • Spectroscopic mapping ellipsometry measurements in the visible spectrum (1.25 to 5.35 eV) are performed to determine the lateral variations of epitaxial graphene properties as grown on 3C SiC. Data taken in the visible spectrum is sensitive to both the Drude absorption of free charge carriers and the characteristic exciton enhanced van Hove singularity at 5 eV. Subsequent analysis with simple oscillator models allows the determination of physical parameters such as free charge carrier scattering time and local graphene thickness with a lateral resolution of 50 microns.
  •  
18.
  • Boosalis, A., et al. (författare)
  • Visible to vacuum ultraviolet dielectric functions of epitaxial graphene on 3C and 4H SiC polytypes determined by spectroscopic ellipsometry
  • 2012
  • Ingår i: Applied Physics Letters. - : American Institute of Physics (AIP). - 0003-6951 .- 1077-3118. ; 101:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectroscopic ellipsometry measurements in the visible to vacuum-ultraviolet spectra (3.5-9.5 eV) are performed to determine the dielectric function of epitaxial graphene on SiC polytypes, including 4H (C-face and Si-face) and 3C SiC (Si-face). The model dielectric function of graphene is composed of two harmonic oscillators and allows the determination of graphene quality, morphology, and strain. A characteristic van Hove singularity at 4.5 eV is present in the dielectric function of all samples, in agreement with observations on exfoliated as well as chemical vapor deposited graphene in the visible range. Model dielectric function analysis suggests that none of our graphene layers experience a significant degree of strain. Graphene grown on the Si-face of 4H SiC exhibits a dielectric function most similar to theoretical predictions for graphene. The carbon buffer layer common for graphene on Si-faces is found to increase polarizability of graphene in the investigated spectrum.
  •  
19.
  • Bouhafs, Chamseddine, et al. (författare)
  • Decoupling and ordering of multilayer graphene on C-face 3C-SiC(111)
  • 2016
  • Ingår i: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 109:20
  • Tidskriftsartikel (refereegranskat)abstract
    • We show experimentally that few layer graphene (FLG) grown on the carbon terminated surface (C-face) of 3C-SiC(111) is composed of decoupled graphene sheets. Landau level spectroscopy on FLG graphene is performed using the infrared optical Hall effect. We find that Landau level transitions in the FLG exhibit polarization preserving selection rules and the transition energies obey a square-root dependence on the magnetic field strength. These results show that FLG on C-face 3C-SiC(111) behave effectively as a single layer graphene with linearly dispersing bands (Dirac cones) at the graphene K point. We estimate from the Landau level spectroscopy an upper limit of the Fermi energy of about 60 meV in the FLG, which corresponds to a carrier density below 2.5 x 10(11) cm(-2). Low-energy electron diffraction mu-LEED) reveals the presence of azimuthally rotated graphene domains with a typical size of amp;lt;= 200 nm.mu-LEED mapping suggests that the azimuth rotation occurs between adjacent domains within the same sheet rather than vertically in the stack. Published by AIP Publishing.
  •  
20.
  • Bouhafs, Chamseddine, et al. (författare)
  • Multi-scale investigation of interface properties, stacking order and decoupling of few layer graphene on C-face 4H-SiC
  • 2017
  • Ingår i: Carbon. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0008-6223 .- 1873-3891. ; 116, s. 722-732
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we report a multi-scale investigation using several nano-, micro and macro-scale techniques of few layer graphene (FLG) sample consisting of large monolayer (ML) and bilayer (BL) areas grown on C-face 4H-SiC (000-1) by high-temperature sublimation. Single 1 x 1 diffraction patterns are observed by micro-low-energy electron diffraction for ML, BL and trilayer graphene with no indication of out-of-plane rotational disorder. A SiOx layer is identified between graphene and SiC by X-ray photoelectron emission spectroscopy and reflectance measurements. The chemical composition of the interface layer changes towards SiO2 and its thickness increases with aging in normal ambient conditions. The formation mechanism of the interface layer is discussed. It is shown by torsion resonance conductive atomic force microscopy that the interface layer causes the formation of non-ideal Schottky contact between ML graphene and SiC. This is attributed to the presence of a large density of interface states. Mid-infrared optical Hall effect measurements revealed Landau-level transitions in FLG that have a square-root dependence on magnetic field, which evidences a stack of decoupled graphene sheets. Contrary to previous works on decoupled C-face graphene, our BL and FLG are composed of ordered decoupled graphene layers without out-of-plane rotation. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
21.
  • Bouhafs, Chamseddine, 1984- (författare)
  • Structural and Electronic Properties of Graphene on 4H- and 3C-SiC
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Graphene is a one-atom-tick carbon layer arranged in a honeycomb lattice. Graphene was first experimentally demonstrated by Andre Geim and Konstantin Novoselov in 2004 using mechanical exfoliation of highly oriented pyrolytic graphite (exfoliated graphene flakes), for which they received the Nobel Prize in Physics in 2010. Exfoliated graphene flakes show outstanding electronic properties, e.g., very high free charge carrier mobility parameters and ballistic transport at room temperature. This makes graphene a suitable material for next generation radio-frequency and terahertz electronic devices. Such applications require fabrication methods of large-area graphene compatible with electronic industry. Graphene grown by sublimation on silicon carbide (SiC) offers a viable route towards production of large-area, electronic-grade material on semi-insulating substrate without the need of transfer. Despite the intense investigations in the field, uniform wafer-scale graphene with very high-quality that matches the properties of exfoliated graphene has not been achieved yet. The key point is to identify and control how the substrate affects graphene uniformity, thickness, layer stacking, structural and electronic properties. Of particular interest is to understand the effects of SiC surface polarity and polytype on graphene properties in order to achieve large-area material with tailored properties for electronic applications. The main objectives of this thesis are to address these issues by investigating the structural and electronic properties of epitaxial graphene grown on 4HSiC and 3C-SiC substrates with different surface polarities. The first part of the thesis includes a general description of the properties of graphene, bilayer graphene and graphite. Then, the properties of epitaxial graphene on SiC by sublimation are detailed. The experimental techniques used to characterize graphene are described. A summary of all papers and contribution to the field is presented at the end of Part I. Part II consists of seven papers.
  •  
22.
  • Bouhafs, Chamseddine, et al. (författare)
  • Structural properties and dielectric function of graphene grown by high-temperature sublimation on 4H-SiC(000-1)
  • 2015
  • Ingår i: Journal of Applied Physics. - : American Institute of Physics (AIP). - 0021-8979 .- 1089-7550. ; 117:8, s. 085701-
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and controlling growth of graphene on the carbon face (C-face) of SiC presents a significant challenge. In this work, we study the structural, vibrational, and dielectric function properties of graphene grown on the C-face of 4H-SiC by high-temperature sublimation in an argon atmosphere. The effect of growth temperature on the graphene number of layers and crystallite size is investigated and discussed in relation to graphene coverage and thickness homogeneity. An amorphous carbon layer at the interface between SiC and the graphene is identified, and its evolution with growth temperature is established. Atomic force microscopy, micro-Raman scattering spectroscopy, spectroscopic ellipsometry, and high-resolution cross-sectional transmission electron microscopy are combined to determine and correlate thickness, stacking order, dielectric function, and interface properties of graphene. The role of surface defects and growth temperature on the graphene growth mechanism and stacking is discussed, and a conclusion about the critical factors to achieve decoupled graphene layers is drawn. (C) 2015 AIP Publishing LLC.
  •  
23.
  • Catarino, N, et al. (författare)
  • Enhanced dynamic annealing and optical activation of Eu implanted a-plane GaN
  • 2012
  • Ingår i: Europhysics letters. - : IOP Publishing. - 0295-5075 .- 1286-4854. ; 97:6, s. 68004-
  • Tidskriftsartikel (refereegranskat)abstract
    • The implantation damage build-up and optical activation of a-plane and c-plane GaN epitaxial films were compared upon 300 keV Eu implantation at room temperature. The implantation defects cause an expansion of the lattice normal to the surface, i.e. along the a-direction in a-plane and along the c-direction in c-plane GaN. The defect profile is bimodal with a pronounced surface damage peak and a second damage peak deeper in the bulk of the samples in both cases. For both surface orientations, the bulk damage saturates for high fluences. Interestingly, the saturation level for a-plane GaN is nearly three times lower than that for c-plane material suggesting very efficient dynamic annealing and strong resistance to radiation. a-plane GaN also shows superior damage recovery during post-implant annealing compared to c-plane GaN. For the lowest fluence, damage in a-plane GaN was fully removed and strong Eu-related red luminescence is observed. Although some residual damage remained after annealing for higher fluences as well as in all c-plane samples, optical activation was achieved in all samples revealing the red emission lines due to the 5D0→ 7F2transition in the Eu3+ ion. The presented results demonstrate a great promise for the use of ion beam processing for a-plane GaN based electronic devices as well as for the development of radiation tolerant electronics.
  •  
24.
  • Chen, Ding-Yuan, 1991, et al. (författare)
  • Structural investigation of ultra-low resistance deeply recessed sidewall ohmic contacts for AlGaN/GaN HEMTs based on Ti/Al/Ti-metallization
  • 2023
  • Ingår i: Semiconductor Science and Technology. - : IOP Publishing Ltd. - 1361-6641 .- 0268-1242. ; 38:10
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents a novel approach to forming low-resistance ohmic contacts for AlGaN/GaN HEMTs. The optimized contacts exhibit an outstanding contact resistance of approximately 0.15 & omega;& BULL;mm. This is achieved by firstly recessing the barrier of the heterostructure to a depth beyond the channel. In this way, the channel region is exposed on the sidewall of the recess. The coverage of the Ti/Al/Ti ohmic metalization on the sidewall is ensured through tilting of the sample during evaporation. The annealing process is performed at a low temperature of 550 & DEG;C. The approach does not require precise control of the recess etching. Furthermore, the method is directly applicable to most barrier designs in terms of thickness and Al-concentration. The impact of recessed sidewall angle, thickness and ratio of Ti and Al layers, and the annealing procedure are investigated. Structural and chemical analyses of the interface between the ohmic contacts and epi-structure indicate the formation of ohmic contacts by the extraction of nitrogen from the epi-structure. The approach is demonstrated on HEMT-structures with two different barrier designs in terms of Al-concentration and barrier thickness. The study demonstrate large process window in regard to recess depth and duration of the annealing as well as high uniformity of the contact resistance across the samples, rendering the approach highly suitable for industrial production processes.
  •  
25.
  • Chen, Shangzhi, et al. (författare)
  • Conductive polymer nanoantennas for dynamic organic plasmonics
  • 2020
  • Ingår i: Nature Nanotechnology. - London : Nature Publishing Group. - 1748-3387 .- 1748-3395. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Being able to dynamically shape light at the nanoscale is oneof the ultimate goals in nano-optics1. Resonant light–matterinteraction can be achieved using conventional plasmonicsbased on metal nanostructures, but their tunability is highlylimited due to a fixed permittivity2. Materials with switchablestates and methods for dynamic control of light–matterinteraction at the nanoscale are therefore desired. Here weshow that nanodisks of a conductive polymer can supportlocalized surface plasmon resonances in the near-infraredand function as dynamic nano-optical antennas, with their resonancebehaviour tunable by chemical redox reactions. Theseplasmons originate from the mobile polaronic charge carriersof a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf)polymer network. We demonstrate complete and reversibleswitching of the optical response of the nanoantennasby chemical tuning of their redox state, which modulatesthe material permittivity between plasmonic and dielectricregimes via non-volatile changes in the mobile chargecarrier density. Further research may study different conductivepolymers and nanostructures and explore their usein various applications, such as dynamic meta-optics andreflective displays.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 205
Typ av publikation
tidskriftsartikel (158)
konferensbidrag (26)
doktorsavhandling (10)
licentiatavhandling (6)
annan publikation (3)
bokkapitel (2)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (174)
övrigt vetenskapligt/konstnärligt (31)
Författare/redaktör
Darakchieva, Vanya (147)
Darakchieva, Vanya, ... (43)
Schubert, M. (43)
Monemar, Bo (38)
Schubert, Mathias (36)
Paskov, Plamen (29)
visa fler...
Monemar, Bo, 1942- (26)
Kühne, Philipp (22)
Stanishev, Vallery (20)
Schaff, W.J. (17)
Persson, Per O A (16)
Paskova, Tanja (16)
Hofmann, T (16)
Yakimova, Rositsa (15)
Paskova, Tanja, 1961 ... (14)
Paskov, Plamen, 1959 ... (14)
Korlacki, Rafal (14)
Birch, Jens (13)
Knight, Sean (13)
Hofmann, Tino (13)
Valcheva, E (13)
Alves, E (12)
Armakavicius, Neriju ... (11)
Tran, Dat (11)
Darakchieva, Vanya, ... (11)
Hultman, Lars (10)
Persson, Ingemar (10)
Richter, Steffen (10)
Stokey, Megan (10)
Chen, Jr-Tai (10)
Hommel, D (10)
Lorenz, K (10)
Papamichail, Alexis (10)
Mock, Alyssa (10)
Janzén, Erik (9)
Bouhafs, Chamseddine (9)
Chen, Shangzhi (9)
Palisaitis, Justinas (8)
Lu, H (8)
Chen, L C (8)
Knight, Sean Robert (8)
Rosén, Johanna (7)
Persson, Per O. Å. (7)
Hsiao, Ching-Lien (7)
Persson, Axel (7)
Yoshikawa, A. (6)
Rorsman, Niklas, 196 ... (6)
Paskov, Plamen P., 1 ... (6)
Ashkenov, N. (6)
Schoeche, S. (6)
visa färre...
Lärosäte
Linköpings universitet (202)
Lunds universitet (42)
Chalmers tekniska högskola (7)
RISE (2)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (205)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (108)
Teknik (21)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy