SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Darakchieva Vanya 1971 ) "

Sökning: WFRF:(Darakchieva Vanya 1971 )

  • Resultat 1-25 av 59
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gogova, Daniela, 1967-, et al. (författare)
  • Epitaxial growth of β-Ga2O3 by hot-wall MOCVD
  • 2022
  • Ingår i: AIP Advances. - : AIP Publishing. - 2158-3226. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The hot-wall metalorganic chemical vapor deposition (MOCVD) concept, previously shown to enable superior material quality and high performance devices based on wide bandgap semiconductors, such as Ga(Al)N and SiC, has been applied to the epitaxial growth of beta-Ga2O3. Epitaxial beta-Ga2O3 layers at high growth rates (above 1 mu m/h), at low reagent flows, and at reduced growth temperatures (740 degrees C) are demonstrated. A high crystalline quality epitaxial material on a c-plane sapphire substrate is attained as corroborated by a combination of x-ray diffraction, high-resolution scanning transmission electron microscopy, and spectroscopic ellipsometry measurements. The hot-wall MOCVD process is transferred to homoepitaxy, and single-crystalline homoepitaxial beta-Ga2O3 layers are demonstrated with a 201 rocking curve width of 118 arc sec, which is comparable to those of the edge-defined film-fed grown (201) beta-Ga2O3 substrates, indicative of similar dislocation densities for epilayers and substrates. Hence, hot-wall MOCVD is proposed as a prospective growth method to be further explored for the fabrication of beta-Ga2O3.
  •  
2.
  •  
3.
  •  
4.
  • Persson, Ingemar, 1985- (författare)
  • Surface characterization of 2D transition metal carbides (MXenes)
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Research on two-dimensional (2D) materials is a rapidly growing field owing to the wide range of new interesting properties found in 2D structures that are vastly different from their three-dimensional (3D) analogues. In addition, 2D materials embodies a significant surface area that facilitates a high degree of surface reactions per unit volume or mass, that is imperative in many applications such as catalysis, energy storage, energy conversion, filtration, and single molecule sensing. MXenes constitute a family of 2D materials consisting of transition metal carbides and/or nitrides, which are typically formed after selective etching of their 3D parent MAX phases. The latter, are a family of nanolaminated compounds that typically follow the formula Mn+1AXn (n=1-3), where M is a transition metal, A is a group 13 or 14 element, and X is C and or N. Selective etching by aqueous F- containing acids removes the A layer leaving 2D Mn+1Xn slabs instantly terminated by a mix of O-, OH- and F-groups. The first and most investigated MXene is Ti3C2TX, where TX stands for surface termination, which has shown record properties in a range of applications (eg. electrode in Li-batteries, supercapacitors, sieving membrane, electromagnetic interference shielding, and carbon capture). Adding to that, over 30 different MXenes have been discovered since 2011, exhibiting alternative or superior properties. Most importantly, elegant routes for property design in the MXene family has been demonstrated, by means of either varying the chemistry in the Mn+1Xn compound, by alloying two M elements, or by changing the structure of the MXene by introducing vacancies.The present work has a led to an additional route for post synthesis property tuning in MXenes by manipulation of surface termination elements. This enables a unique toolbox for property tuning which is not available to other 2D materials and is highly beneficial for applications that is dependent on surface reactions. Furthermore, chemical and structural characterization of terminations on single sheets is essential to rule out the influence of intercalants or contamination that is typically present in multilayer MXene samples or thin films. For that purpose, a method for preparing isolated contamination free single sheets of MXene samples for transmission electron microscopy (TEM) characterization was established. In order to determine vacancy and termination sites, atomically resolved scanning (S)TEM imaging and image simulations was carried out. Two main processes were employed to substitute the termination elements.1) An initial thermal treatment in vacuum facilitates F desorption and it was shown that O-terminations rearranges on the evacuated sites. H2 gas exposure in a controlled environment demonstrated a removal of the remaining O-terminations. As a result, termination-free MXene is possible to realize under vacuum conditions.2) CO2 was introduced as a first non-inherent termination on MXene by in situ CO2 gas exposure at low temperatures. That was a first demonstration of Ti3C2TX as promising material for carbon capture. Additionally, O-saturated surfaces were demonstrated after introduction of O2 gas on the F-depleted Ti3C2TX MXene, which is highly relevant for hydrogen evolution reactions where fully O-terminated Ti3C2TX are predicted to improve efficiency.A Lewis acid melt synthesis method was used to realize the first MXene exclusively terminated with Cl. Moreover, this was the first report of a MXene directly synthesised with terminations other than O, OH, and F.Furthermore, we have expanded the space of property tuning by introduction of chemical ordering, by selective etching of Y in an alloyed (Mo2/3Y1/3)2CTX MXene. This either produced chemical ordering with one M (Mo) element and vacancies, or ordering between two M (Mo and Y) elements. This was further reported to significantly increase volumetric capacitance because of the increased number of active sites around vacancies, leading to an increasing charge density. As a final note, the stability of Nb2CTX MXene under ambient conditions was investigated. It was found that the surface Nb adatoms, present after etching, got oxidized over time which resulted in local clustering and effectively degraded the MXene.This work has demonstrated reproducible surface characterization methods for determining termination elements and sites in 2D MXenes, that is ultimately governing MXene properties. Most importantly, we report on a new approach for MXene property tuning as well as contributing to several existing property tuning approaches. 
  •  
5.
  • Armakavicius, Nerijus, 1989-, et al. (författare)
  • Electron effective mass in GaN revisited: New insights from terahertz and mid-infrared optical Hall effect
  • 2024
  • Ingår i: APL Materials. - : AIP Publishing. - 2166-532X. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron effective mass is a fundamental material parameter defining the free charge carrier transport properties, but it is very challenging to be experimentally determined at high temperatures relevant to device operation. In this work, we obtain the electron effective mass parameters in a Si-doped GaN bulk substrate and epitaxial layers from terahertz (THz) and mid-infrared (MIR) optical Hall effect (OHE) measurements in the temperature range of 38-340 K. The OHE data are analyzed using the well-accepted Drude model to account for the free charge carrier contributions. A strong temperature dependence of the electron effective mass parameter in both bulk and epitaxial GaN with values ranging from (0.18 +/- 0.02) m(0) to (0.34 +/- 0.01) m(0) at a low temperature (38 K) and room temperature, respectively, is obtained from the THz OHE analysis. The observed effective mass enhancement with temperature is evaluated and discussed in view of conduction band nonparabolicity, polaron effect, strain, and deviations from the classical Drude behavior. On the other hand, the electron effective mass parameter determined by MIR OHE is found to be temperature independent with a value of (0.200 +/- 0.002) m(0). A possible explanation for the different findings from THz OHE and MIR OHE is proposed. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
  •  
6.
  • Armakavicius, Nerijus, 1989- (författare)
  • Free charge carrier properties in group III nitrides and graphene studied by THz-to-MIR ellipsometry and optical Hall effect
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Development of silicon based electronics have revolutionized our every day life during the last five decades. Nowadays silicon based devices operate close to their theoretical limits that is becoming a bottleneck for further progress. In particular, for the growing field of high frequency and high power electronics, silicon cannot offer the required properties. Development of materials capable of providing high current densities, carrier mobilities and high breakdown fields is crucial for further progress in state of the art electronics.Epitaxial graphene grown on semi-insulating silicon carbide substrates has a high potential to be integrated in current planar device technologies. High electron mobilities and sheet carrier densities make graphene extremely attractive for high frequency analog applications. One of the remaining challenges is the interaction of epitaxial graphene with the substrate. Typically, much lower free charge carrier mobilities, compared to free standing graphene, and doping, due to charge transfer from the substrate, is reported. Thus, a good understanding of the intrinsic free charge carriers properties and the factors affecting them is very important for further development of epitaxial graphene.Group III-nitrides have been extensively studied and already have proven their high efficiency as light emitting diodes for short wavelengths. High carrier mobilities and breakdown electric fields were demonstrated for group III-nitrides, making them attractive for high frequency and high power applications. Currently, In-rich InGaN alloys and AlGaN/GaN high electron mobility structures are of high interest for the research community due to open fundamental questions such as free charge carrier properties at high temperatures and wavefunction hybridization in AlGaN/GaN heterostructures.Electrical characterization techniques, commonly used for the determination of free charge carrier properties, require good ohmic and Schottky contacts, which in certain cases can be difficult to achieve. Access to electrical properties of buried conductive channels in multilayered structures requires modification of samples and good knowledge of the electrical properties of all electrical junctions within the structure. Moreover, the use of contacts to electrically characterize two-dimensional electronic materials, such as graphene, can alter their intrinsic properties. Furthermore, the determination of effective mass parameters commonly employs cyclotron resonance and Shubnikov-de Haas oscillations measurements, which require long scattering times of free charge carriers, high magnetic fields and low temperatures.The optical Hall effect is an external magnetic-field induced birefringence of conductive layers due to the free charge carriers interaction with long-wavelength electromagnetic waves under the influence of the Lorentz force. The optical Hall effect can be measured by generalized ellipsometry and provides a powerful method for the determination of free charge carrier properties in a non-destructive and contactless manner. The optical Hall effect measurements can provide quantitative information about free charge carrier type, concentration, mobility and effective mass parameters at temperatures ranging from few kelvins to room temperature and above. It further allows to differentiate the free charge carrier properties of individual layers in multilayer samples. The employment of a backside cavity for transparent samples can enhance the optical Hall effect and allows to access free charge carrier properties at relatively low magnetic fields using permanent magnet.The optical Hall effect measurements at mid-infrared spectral range can be used to probe quantum mechanical phenomena such as Landau levels in graphene. The magnetic field dependence of the inter-Landau level transition energies and optical polarization selection rules provide information about coupling properties between graphene layers and the electronic band structure.Measurement of the optical Hall effect by generalized ellipsometry is an indirect technique requiring subsequent data analysis. Parameterized optical models are fitted to match experimentally measured ellipsometric spectra by varying physically significant model parameters. Analysis of the generalized ellipsometry data at long wavelengths for samples containing free charge carriers by optical models based on the classical Drude formulation, augmented with an external magnetic field contribution, allows to extract carrier concentration, mobility and effective mass parameters.The development of the integrated FIR and THz frequency-domain ellipsometer at the Terahertz Materials Analysis Center in Linköping University was part of the graduate studies presented in this dissertation. The THz ellipsometer capabilities are demonstrated by determination of Si and sapphire optical constants, and free charge carrier properties of two-dimensional electron gas in GaN-based high electron mobility transistor structures. The THz ellipsometry is further shown to be capable of determining free charge carrier properties and following their changes upon variation of ambient conditions in atomically thin layers with an example of epitaxial graphene.A potential of the THz OHE with the cavity enhancement (THz-CE-OHE) for determination of the free charge carrier properties in atomically thin layers were demonstrated by the measurements of the carrier properties in monolayer and multilayer epitaxial graphene on Si-face 4H-SiC. The data analysis revealed p-type doping for monolayer graphene with a carrier density in the low 1012 cm-2 range and a carrier mobility of 1550 cm2V-1s-1. For the multilayer graphene, n-type doping with a carrier density in the low 1013 cm-2 range, a mobility of 470 cm2V-1s-1 and an effective mass of (0.14 ± 0.03)m0 were extracted. Different type of doping among monolayer and multilayer graphene is explained as a result of different hydrophobicity among samples.Further, we have employed THz-CE-OHE to determine for the first time anisotropic mobility parameter in quasi-free-standing bilayer epitaxial graphene induced by step-like surface morphology of 4H-SiC. Correlation of atomic force microscopy, Raman scattering spectroscopy, scanning probe Kelvin probe microscopy, low energy electron microscopy and diffraction analysis allows us to investigate the possible scattering mechanisms and suggests that anisotropic mobility is induced by varying local mobility parameter due to interaction between graphene and underlaying substrate.The origin of the layers decoupling in multilayer graphene on C-face 4H-SiC was studied by MIR-OHE, transmission electron microscopy and electron energy loss spectroscopy. The results revealed the decoupling of the layers induced by the increased interlayer spacing which is attributed to the Si atoms trapped between graphene layers.MIR ellipsometry and MIR-OHE measurements were employed to determine the electron effective mass in a wurtzite In0.33Ga0.67N epitaxial layer. The data analysis revealed the effective mass parameters parallel and perpendicular to the c-axis which can be considered as equal within sensitivity of our measurements. The determined effective mass is consistent with linear dependence on the In content.Analysis of the free charge carrier properties in AlGaN/GaN high electron mobility structures with modified interfaces showed that AlGaN/GaN interface structure has a significant effect on the mobility parameter. A sample with a sharp interface layers exhibits a record mobility of 2332 ± 73 cm2V-1s-1. The determined effective mass parameters showed an increase compared to the bulk GaN value, which is attributed to the penetration of the electron wavefunction into the AlGaN barrier layer.Temperature dependence of free charge carrier properties in GaN-based high electron mobility transistor structures with AlGaN and InAlN barrier layers were measured by terahertz optical Hall effect technique in a temperature range from 7.2 K to 398 K. The results revealed strong changes in the effective mass and mobility parameters. At temperatures below 57 K very high carrier mobility parameters above 20000 cm2V-1s-1 for AlGaN-barrier sample and much lower mobilities of ~ 5000 cm2V-1s-1 for InAlN-barrier sample were obtained. At low temperatures the effective mass parameters for both samples are very similar to bulk GaN value, while at temperatures above 131 K effective mass shows a strong increase with temperature. The effective masses of 0.344 m0 (@370 K) and 0.439 m0 (@398 K) were obtained for AlGaN- and InAlN-barrier samples, respectively. We discussed the possible origins of effective mass enhancement in high electron mobility transistor structures.  
  •  
7.
  • Armakavicius, Nerijus (författare)
  • Study of novel electronic materials by mid-infrared and terahertz optical Hall effect
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Development of silicon based electronics have revolutionized our every day life during the last three decades. Nowadays Si based devices operate close to their theoretical limits that is becoming a bottleneck for further progress. In particular, for the growing field of high frequency and high power electronics, Si cannot offer the required properties. Development of materials capable of providing high current densities, carrier mobilities and high breakdown fields is crucial for a progress in state of the art electronics.Epitaxial graphene grown on semi-insulating silicon carbide substrates has a high potential to be integrated in the current planar device technologies. High electron mobilities and sheet carrier densities make graphene extremely attractive for high frequency analog applications. One of the remaining challenges is the interaction of epitaxial graphene with the substrate. Typically, much lower free charge carrier mobilities, compared to free standing graphene, and doping, due to charge transfer from the substrate, is reported. Thus, a good understanding of the intrinsic free charge carriers properties and the factors affecting them is very important for further development of epitaxial graphene.III-group nitrides have been extensively studied and already have proven their high efficiency as light sources for short wavelengths. High carrier mobilities and breakdown electric fields were demonstrated for III-group nitrides, making them attractive for high frequency and high power applications. Currently, In-rich InGaN alloys and AlGaN/GaN high electron mobility structures are of high interest for the research community due to open fundamental questions.Electrical characterization techniques, commonly used for the determination of free charge carrier properties, require good ohmic and Schottky contacts, which in certain cases can be difficult to achieve. Access to electrical properties of buried conductive channels in multilayered structures requires modification of samples and good knowledge of the electrical properties of all electrical contact within the structure. Moreover, the use of electrical contacts to electrically characterize two-dimensional electronic materials, such as graphene, can alter their intrinsic properties. Furthermore, the determination of effective mass parameters commonly employs cyclotron resonance and Shubnikov-de Haas oscillations measurements, which require long scattering times of free charge carriers, high magnetic fields and low temperatures.The optical Hall effect is an external magnetic field induced optical anisotropy in  conductive layers due to the motion of the free charge carriers under the influence of the Lorentz force, and is equivalent to the electrical Hall effect at optical frequencies. The optical Hall effect can be measured by generalized ellipsometry and provides a powerful method for the determination of free charge carrier properties in a non-destructive and contactless manner. In principle, a single optical Hall effect measurement can provide quantitative information about free charge carrier types, concentrations, mobilities and effective mass parameters at temperatures ranging from few kelvins to room temperature and above. Further, it was demonstrated that for transparent samples, a backside cavity can be employed to enhance the optical Hall effect.Measurement of the optical Hall effect by generalized ellipsometry is an indirect technique requiring subsequent data analysis. Parameterized optical models are fitted to match experimentally measured ellipsometric data by varying physically significant parameters. Analysis of the optical response of samples, containing free charge carriers, employing optical models based on the classical Drude model, which is augmented with an external magnetic field contribution, provide access to the free charge carrier properties.The main research results of the graduate studies presented in this licentiate thesis are summarized in the five scientific papers.Paper I. Description of the custom-built terahertz frequency-domain spectroscopic ellipsometer at Linköping University. The terahertz ellipsometer capabilities are demonstrated by an accurate determination of the isotropic and anisotropic refractive indices of silicon and m-plane sapphire, respectively. Further, terahertz optical Hall effect measurements of an AlGaN/GaN high electron mobility structures were employed to extract the two-dimensional electron gas sheet density, mobility and effective mass parameters. Last, in-situ optical Hall effect measurement on epitaxial graphene in a gas cell with controllable environment, were used to study the effects of environmental doping on the mobility and carrier concentration.Paper II. Presents terahertz cavity-enhanced optical Hall measurements of the monolayer and multilayer epitaxial graphene on semi-insulating 4H-SiC (0001) substrates. The data analysis revealed p-type doping for monolayer graphene with a carrier density in the low 1012 cm−2 range and a carrier mobility of 1550 cm2/V·s. For the multilayer epitaxial graphene, n-type doping with a carrier density in the low 1013 cm−2 range, a mobility of 470 cm2/V·s and an effective mass of (0.14 ± 0.03) m0 were extracted. The measurements demonstrate that cavity-enhanced optical Hall effect measurements can be applied to study electronic properties of two-dimensional materials.Paper III. Terahertz cavity-enhanced optical Hall effect measurements are employed to study anisotropic transport in as-grown monolayer, quasi free-standing monolayer and quasi free-standing bilayer epitaxial graphene on semi-insulating 4H-SiC (0001) substrates. The data analysis revealed a strong anisotropy in the carrier mobilities of the quasi freestanding bilayer graphene. The anisotropy is demonstrated to be induced by carriers scattering at the step edges of the SiC, by showing that the mobility is higher along the step than across them. The scattering mechanism is discussed based on the results of the optical Hall effect, low-energy electron microscopy, low-energy electron diffraction and Raman measurements.Paper IV. Mid-infrared spectroscopic ellipsometry and mid-infrared optical Hall effect measurements are employed to determine the electron effective mass in an In0.33Ga0.67N epitaxial layer. The data analysis reveals slightly anisotropic effective mass and carrier mobility parameters together with the optical phonon frequencies and broadenings.Paper V. Terahertz cavity-enhanced optical Hall measurements are employed to study the free charge carrier properties in a set of AlGaN/GaN high electron mobility structures with modified interfaces. The results show that the interface structure has a significant effect on the free charge carrier mobility and that the sample with a sharp interface between an AlGaN barrier and a GaN buffer layers exhibits a record mobility of 2332±73 cm2/V·s. The determined effective mass parameters showed an increase compared to the GaN value, that is attributed the the penetration of the electron wavefunction into the AlGaN barrier layer.
  •  
8.
  •  
9.
  • Chen, Shangzhi, et al. (författare)
  • Conductive polymer nanoantennas for dynamic organic plasmonics
  • 2020
  • Ingår i: Nature Nanotechnology. - London : Nature Publishing Group. - 1748-3387 .- 1748-3395. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Being able to dynamically shape light at the nanoscale is oneof the ultimate goals in nano-optics1. Resonant light–matterinteraction can be achieved using conventional plasmonicsbased on metal nanostructures, but their tunability is highlylimited due to a fixed permittivity2. Materials with switchablestates and methods for dynamic control of light–matterinteraction at the nanoscale are therefore desired. Here weshow that nanodisks of a conductive polymer can supportlocalized surface plasmon resonances in the near-infraredand function as dynamic nano-optical antennas, with their resonancebehaviour tunable by chemical redox reactions. Theseplasmons originate from the mobile polaronic charge carriersof a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf)polymer network. We demonstrate complete and reversibleswitching of the optical response of the nanoantennasby chemical tuning of their redox state, which modulatesthe material permittivity between plasmonic and dielectricregimes via non-volatile changes in the mobile chargecarrier density. Further research may study different conductivepolymers and nanostructures and explore their usein various applications, such as dynamic meta-optics andreflective displays.
  •  
10.
  • Chen, Shangzhi (författare)
  • Optics of Conducting Polymer Thin Films and Nanostructures
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Intrinsically conducting polymers forms a category of doped conjugated polymers that can conduct electricity. Since their discovery in the late 1970s, they have been widely applied in many fields, ranging from optoelectronic devices to biosensors. The most common type of conducting polymers is poly(3,4-ethylenedioxythiophene), or PEDOT. PEDOT has been popularly used as electrodes for solar cells or light-emitting diodes, as channels for organic electrochemical transistors, and as p-type legs for organic thermoelectric generators. Although many studies have been dedicated to PEDOT-based materials, there has been a lack of a unified model to describe their optical properties across different spectral ranges. In addition, the interesting optical properties of PEDOT-based materials, benefiting from its semi-metallic character, have only been rarely studied and utilized, and could potentially enable new applications.Plasmonics is a research field focusing on interactions between light and metals, such as the noble metals (gold and silver). It has enabled various opportunities in fundamental photonics as well as practical applications, varying from biosensors to colour displays. This thesis explores highly conducting polymers as alternatives to noble metals and as a new type of active plasmonic materials. Despite high degrees of microstructural disorder, conducting polymers can possess electrical conductivity approaching that of poor metals, with particularly high conductivity for PEDOT deposited via vapour phase polymerization (VPP). In this thesis, we systematically studied the optical and structural properties of VPP PEDOT thin films and their nanostructures for plasmonics and other optical applications. We employed ultra-wide spectral range ellipsometry to characterize thin VPP PEDOT films and proposed an anisotropic Drude-Lorentz model to describe their optical conductivity, covering the ultraviolet, visible, infrared, and terahertz ranges. Based on this model, PEDOT doped with tosylate (PEDOT:Tos) presented negative real permittivity in the near infrared range. While this indicated optical metallic character, the material also showed comparably large imaginary permittivity and associated losses. To better understand the VPP process, we carefully examined films with a collection of microstructural and spectroscopic characterization methods and found a vertical layer stratification in these polymer films. We unveiled the cause as related to unbalanced transport of polymerization precursors. By selection of suitable counterions, e.g., trifluoromethane sulfonate (OTf), and optimization of reaction conditions, we were able to obtain PEDOT films with electrical conductivity exceeding 5000 S/cm. In the near infrared range from 1 to 5 µm, these PEDOT:OTf films provided a well-defined plasmonic regime, characterized by negative real permittivity and lower magnitude imaginary component. Using a colloidal lithography-based approach, we managed to fabricate nanodisks of PEDOT:OTf and showed that they exhibited clear plasmonic absorption features. The experimental results matched theoretical calculations and numerical simulations. Benefiting from their mixed ionic-electronic conducting characters, such organic plasmonic materials possess redox-tunable properties that make them promising as tuneable optical nanoantennas for spatiotemporally dynamic systems. Finally, we presented a low-cost and efficient method to create structural colour surfaces and images based on UV-treated PEDOT films on metallic mirrors. The concept generates beautiful and vivid colours through-out the visible range utilizing a synergistic effect of simultaneously modulating polymer absorption and film thickness. The simplicity of the device structure, facile fabrication process, and tunability make this proof-of-concept device a potential candidate for future low-cost backlight-free displays and labels.
  •  
11.
  • Chen, Shangzhi, et al. (författare)
  • Redox-tunable structural colour images by UV-patterned conducting polymer nanofilms on metal surfaces
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Precise manipulation of light-matter interaction has enabled a wide variety of approaches to create bright and vivid structural colours. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches significantly impede their further development towards flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Herein, we present a simple and efficient method to generate structural colours based on nanoscale conducting polymer films prepared on metallic surfaces via vapour phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable colours from violet to red. Together with greyscale photomasks this enables fabrication of high-resolution colour images using single exposure steps. We further demonstrate spatiotemporal tuning of the structurally coloured surfaces and images via electrochemical modulation of the polymer redox state. The simple structure, facile fabrication, wide colour gamut, and dynamic colour tuning make this concept competitive for future multi-functional and smart displays.
  •  
12.
  • Cubarovs, Mihails, et al. (författare)
  • Epitaxial CVD growthof sp2-hybridized boron nitrideusing aluminum nitride as buffer layer
  • 2011
  • Ingår i: Physica Status Solidi. Rapid Research Letters. - : Wiley-VCH Verlagsgesellschaft. - 1862-6254 .- 1862-6270. ; 5:10-11, s. 397-399
  • Tidskriftsartikel (refereegranskat)abstract
    • Epitaxial growth of sp2-hybridized boron nitride (BN) using chemical vapour deposition, with ammonia and triethyl boron as precursors, is enabled on sapphire by introducing an aluminium nitride (AlN) buffer layer. This buffer layer is formed by initial nitridation of the substrate. Epitaxial growth is verified by X-ray diffraction measurements in Bragg–Brentano configuration, pole figure measurements and transmission electron microscopy. The in-plane stretching vibration of sp2-hybridized BN is observed at 1366 cm–1 from Raman spectroscopy. Time-of-flight elastic recoil detection analysis confirms almost perfect stoichiometric BN with low concentration of carbon, oxygen and hydrogen contaminations.
  •  
13.
  • Darakchieva, Vanya, 1971-, et al. (författare)
  • Anisotropic strain and phonon deformation potentials in GaN
  • 2007
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 75:19, s. 195217-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report optical phonon frequency studies in anisotropically strained c -plane- and a -plane-oriented GaN films by generalized infrared spectroscopic ellipsometry and Raman scattering spectroscopy. The anisotropic strain in the films is obtained from high-resolution x-ray diffraction measurements. Experimental evidence for splitting of the GaN E1 (TO), E1 (LO), and E2 phonons under anisotropic strain in the basal plane is presented, and their phonon deformation potentials c E1 (TO), c E1 (LO), and c E2 are determined. A distinct correlation between anisotropic strain and the A1 (TO) and E1 (LO) frequencies of a -plane GaN films reveals the a A1 (TO), b A1 (TO), a E1 (LO), and b E1 (LO) phonon deformation potentials. The a A1 (TO) and b A1 (TO) are found to be in very good agreement with previous results from Raman experiments. Our a A1 (TO) and a E1 (LO) phonon deformation potentials agree well with recently reported theoretical estimations, while b A1 (TO) and b E1 (LO) are found to be significantly larger than the theoretical values. A discussion of the observed differences is presented. © 2007 The American Physical Society.
  •  
14.
  •  
15.
  • Darakchieva, Vanya, 1971-, et al. (författare)
  • Deformation potentials of the E1 (TO) and E2 modes of InN
  • 2004
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 84:18, s. 3636-3638
  • Tidskriftsartikel (refereegranskat)abstract
    • The determination of deformation potentials of E1(TO) and E 2 modes of InN were discussed. The deformation potentials were evaluated for two sets of stiffness constants using x-ray diffraction, IR spectroscopic ellipsometry (IRSE), Raman scattering, and Grüneisen parameter values. The InN layer were grown on GaN buffer layers on (0001) sapphire by molecular beam epitaxy. It was found that the strain-free values of the InN E1(TO) mode was 477.9 cm-1 and 491.9 cm -1 for the E2 modes.
  •  
16.
  • Darakchieva, Vanya, 1971-, et al. (författare)
  • Effects of strain and composition on the lattice parameters and applicability of Vegard's rule in Al-rich Al1-x Inx N films grown on sapphire
  • 2008
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 103:10, s. 103513-
  • Tidskriftsartikel (refereegranskat)abstract
    • The lattice parameters and strain evolution in Al1-x In x N films with 0.07≤x≤0.22 grown on GaN-buffered sapphire substrates by metal organic vapor phase epitaxy have been studied by reciprocal space mapping. Decoupling of compositional effects on the strain determination was accomplished by measuring the In contents in the films both by Rutherford backscattering spectrometry (RBS) and x-ray diffraction (XRD). Differences between XRD and RBS In contents are discussed in terms of compositions and biaxial strain in the films. It is suggested that strain plays an important role for the observed deviation from Vegard's rule in the case of pseudomorphic films. On the other hand, a good agreement between the In contents determined by XRD and RBS is found for Al1-x Inx N films with low degree of strain or partially relaxed, suggesting applicability of Vegard's rule in the narrow compositional range around the lattice matching to GaN. © 2008 American Institute of Physics.
  •  
17.
  •  
18.
  • Darakchieva, Vanya, 1971-, et al. (författare)
  • On the lattice parameters of GaN
  • 2007
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 91:3, s. 031911-
  • Tidskriftsartikel (refereegranskat)abstract
    • The lattice parameters of low-defect density, undoped bulk GaN fabricated by hydride vapor phase epitaxy (HVPE) on (0001) sapphire and subsequent substrate removal, are precisely determined using high-resolution x-ray diffraction. The obtained values, c=5.18523 Å and a=3.18926 Å, are compared with the lattice parameters of freestanding HVPE GaN from different sources and found to be representative for state-of-the-art undoped HVPE bulk GaN material. A comparison with bulk GaN fabricated by the high-pressure technique and homoepitaxial GaN is made, and significant differences in the lattice parameters are found. The observed differences are discussed and a possible explanation is suggested. © 2007 American Institute of Physics.
  •  
19.
  • Darakchieva, Vanya, 1971-, et al. (författare)
  • Optical phonons in a-plane GaN under anisotropic strain
  • 2008. - 1
  • Ingår i: Group-III nitrides with nonpolar surfaces: growth, properties and devices. - : Wiley. - 9783527407682 ; , s. 219-253
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • This is the first monograph to discuss in detail the current stage of development of nonpolar nitrides, with specific emphasis on the three main topics of crystal growth, properties and device studies. World–class researchers summarize their own recent achievements in their respective fields of expertise, covering both nonpolar and semipolar nitride materials. The bulk of the discussion in each chapter is related to the physical properties of the material obtained by the respective technique, in particular, defect density and properties of the defects in nonpolar nitrides. In addiiton, the optical and vibrational properties are also addressed in several chapters, as is progress in heterostructures, quantum wells and dots based on the AlGaN/GaN and the InGaN/GaN systems. Finally, an outlook of the application areas of the differently grown materials is presented in most chapters, together with the capabilities and limitations of the respective growth approaches used.
  •  
20.
  • Darakchieva, Vanya, 1971-, et al. (författare)
  • Phonon mode behavior in strained wurtzite AlN/GaN superlattices
  • 2005
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 71:11, s. 115329-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied phonons in AlN/GaN superlattices with different periods but a constant well-to-barrier ratio using a combination of infrared spectroscopic ellipsometry and Raman scattering spectroscopy. The strain evolution in the superlattice structures is assessed by high-resolution x-ray diffraction and reciprocal space mapping. We have identified E1(TO), A 1(LO) and E2 localized, and E1(LO) and A 1(TO) delocalized superlattice modes. The dependencies of their frequencies on in-plane strain are analyzed and discussed, and the strain-free frequencies of the superlattice modes are estimated. A good agreement between theory and experiment is found in the case of GaN localized modes, while large deviations between theoretically estimated and experimentally determined frequency shifts are observed for the AlN localized modes. The delocalization effect on the A1(TO) and E1(LO) phonons, as well as the free-carrier effect on the E1(LO) phonon are also discussed. ©2005 The American Physical Society.
  •  
21.
  • Darakchieva, Vanya, 1971-, et al. (författare)
  • Phonons in strained AlGaN/GaN superlattices
  • 2007
  • Ingår i: 6th International Symposium on Blue Laser and Light Emitting Diodes,2006. - Physica Status Solidi, vol C4 : WILEYVCH Verlag GmbH & Co. KGaA. ; , s. 170-
  • Konferensbidrag (refereegranskat)
  •  
22.
  • Darakchieva, Vanya, 1971-, et al. (författare)
  • Strain and compositional analyzes of Al-rich Al1-xInxN alloys grown by MOVPE : impact on the applicability of Vegard's rule
  • 2008
  • Ingår i: Physica Status Solidi (C) Current Topics in Solid State Physics. - : Wiley. ; , s. 1859-1862
  • Konferensbidrag (refereegranskat)abstract
    • We have studied composition and strain in Al1–xInxN films with 0.128≤ x≤ 0.22 grown on GaN-buffered sapphire substrates by metalorganic vapor phase epitaxy. A good agreement between the In contents determined by Rutherford backscattering spectrometry (RBS) and Xray diffraction (XRD) is found for x≤ 18, suggesting applicability of Vegard's rule in the narrow compositional range around the lattice matching to GaN. The increase of the In content up to x = 0.22 leads to a formation of sub-layers with a higher composition, accompanied by deviations from Vegard's rule. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
  •  
23.
  • Darakchieva, Vanya, 1971- (författare)
  • Strain-related structural and vibrational properties of group-III nitride layers and superlattices
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This PhD thesis is focused on strain-related phenomena in group-III nitride layers and heterostructures. Key issues in material properties as phonon mode behavior, structure and lattice parameters of AlN, InN and GaN, as well as of AlN/GaN superlattices are addressed in order to give answers to some open questions. The research is motivated by the enormous technological application potential of the group-III nitride materials for optoelectronic devices and high temperature, and high power devices. Due to the lack of native substrates, the group-III nitrides are typically grown on foreign substrates resulting inbuilt-in strain in the films, as well as, in misorientation and defect formation. Substantial efforts have been concentrated on the research of strain-related fundamental properties of group-III nitrides. However, some of the strain-related structural and vibrational properties of these materials remain unclear and this gap has to be filled in order to fully explore the possibilities for applications.The thesis contributes to the knowledge of the strain-related phenomena ingroup-III nitrides by concentrating on the following: i) lattice parameters and strain relaxation in GaN, AlN, InN films with different thicknesses, as well as free-standing GaN quasi-substrates; ii) phonon mode behavior and deformation potentials of AlN and InN; iii) structural evolution in AlN and GaN; iv)phonon mode behavior and strain evolution in AlN/GaN superlattices. The layers studied were grown by a variety of growth techniques and nucleation schemes aiming at establishing of a comprehensive understanding of the material properties.The thesis is organized as follows: In the first part a general description of the basic properties of group-III nitrides is given with a special emphasis on the structural and vibrational properties. The vibrational properties of lowdimensional group-III nitrides are also reviewed. After that, basic concepts of strain phenomenon in group-III nitrides, as well as the strain effects on phonons and on structural properties are discussed. Finally, the experimental techniques used are introduced.The second part of the thesis consists of six papers providing informationon specific strain-related structural and vibrational properties of III-nitride layers and superlattices.The lattice parameters of GaN films grown by two different techniques on a-plane sapphire are the subject of Paper I. We have determined two different values of the in-plane lattice parameter of the GaN layers in contrast to only one in the case of films grown on c-plane sapphire. We suggest that the observed distortion of the hexagonal symmetry can be attributed to the presence of anisotropic in-plane strain in the films. A new approach to determination of lattice parameters has been proposed.Paper II deals with the lattice parameters of GaN quasi-substrates grown by hydride vapor phase epitaxy using two nucleation schemes. The lattice parameters of both, Ga- and N-polar faces of the quasi-substrates were determined and compared. The strain relaxation phenomena in such free-standing layers and the concept of strain-free lattice parameters are discussed.Papers III and IV are devoted to the deformation potentials of the E 1 (TO)mode in AlN, and the E1 (TO) and E2 modes in InN, where a combination of infraredellipsometry, infrared reflection, Raman scattering and x-ray diffractionstudies was used. The reported results in Paper III present the first experimentalvalues for the E1 (TO) deformation potentials of AlN and the results for the InN deformation potentials in Paper IV are the first ever reported.The strain evolution and its effect on the structural and vibrational properties of thin epitaxial AlN layers with different thicknesses have been studied in Paper V. A model of the strain evolution with film thickness and related defect structure is suggested and it is successfully used in the infrared ellipsometry data analysis.Paper VI is focused on the strain evolution in AlN/GaN superlattices withdifferent periods and its effect on their phonon properties. The presence of phonons originating from the superlattice constituents was revealed and their nature is discussed.
  •  
24.
  • Darakchieva, Vanya, 1971-, et al. (författare)
  • Strain-related structural and vibrational properties of thin epitaxial AIN layers
  • 2004
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 70:4, s. 045411-
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of film thickness on the strain and structural properties of thin epitaxial AIN films has been investigated by high resolution x-ray diffraction techniques and transmission electron microscopy. As a result a sublayer model of the degree of strain and related defects for all films is proposed. A sublayer with low defect density and a strain gradient is found to be present in all films and it reaches a maximum thickness of 65 nm. The films are compressively strained and the strain relaxation after a thickness of 65 nm is shown to be accompanied by misfit dislocation generation and increase of the mosaic tilt. The vibrational properties of the films have been studied by generalized infrared spectroscopic ellipsometry. The proposed sublayer model has been successfully applied to the analysis of the ellipsometry data through model calculations of the infrared dielectric function which confirm the sublayer model. It is found that the strain gradient results in a gradient of the phonon mode frequencies and broadening parameter. The initial strain relaxation in the films leads to narrowing of the observable infrared modes, while further strain relaxation broadens the modes when substantial defect generation occurs.
  •  
25.
  • Darakchieva, Vanya, 1971-, et al. (författare)
  • Structural characteristics and lattice parameters of hydride vapor phase epitaxial GaN free-standing quasisubstrates
  • 2005
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 97:1, s. 013517-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the lattice parameters of hydride vapor phase epitaxy (HVPE)-GaN quasisubstrates in relation to their structural properties. Layers grown on single-layer metalorganic vapor phase epitaxy (MOVPE) templates and on epitaxial lateral overgrown MOVPE templates are characterized by Raman scattering, high-resolution x-ray diffraction, and reciprocal space mapping. The strain relaxation in the films versus their thickness was found to proceed similarly in the GaN samples grown using the two types of templates but the strain saturates at different nonzero levels. The lattice parameters of relatively thin HVPE-GaN free-standing quasisubstrates indicate that no total strain relaxation is achieved after the sapphire removal. The lattice parameters of the thick quasisubstrates grown on different templates are not affected by the separation process and are found to have values very close to the reference strain-free lattice parameters of GaN powder. © 2005 American Institute of Physics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 59
Typ av publikation
tidskriftsartikel (31)
konferensbidrag (13)
doktorsavhandling (8)
licentiatavhandling (5)
annan publikation (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt/konstnärligt (20)
Författare/redaktör
Darakchieva, Vanya, ... (43)
Monemar, Bo, 1942- (26)
Paskova, Tanja, 1961 ... (14)
Paskov, Plamen, 1959 ... (14)
Schubert, M. (13)
Darakchieva, Vanya, ... (11)
visa fler...
Hommel, D (6)
Lu, H (5)
Paskov, Plamen P., 1 ... (5)
Schaff, W.J. (5)
Darakchieva, Vanya (4)
Armakavicius, Neriju ... (4)
Kuhne, Philipp, 1981 ... (4)
Tran, Dat (4)
Richter, Steffen (4)
Papamichail, Alexis, ... (4)
Valcheva, E (4)
Ashkenov, N. (4)
Chen, Shangzhi (4)
Hofmann, T (4)
Schubert, Mathias, 1 ... (4)
Saarinen, K. (3)
Palisaitis, Justinas (3)
Nawaz, Muhammad (3)
Chen, L C (3)
Stanishev, Vallery, ... (3)
Paskova, T. (3)
Jonsson, Magnus, 198 ... (3)
Korlacki, Rafal (3)
Janzén, Erik, 1954- (2)
Hultman, Lars (2)
Schubert, Mathias (2)
Hultman, Lars, 1960- (2)
Birch, Jens (2)
Sandström, Per (2)
Birch, Jens, 1960- (2)
Knight, Sean Robert (2)
Stokey, Megan (2)
Amano, H (2)
Akasaki, I (2)
Arwin, Hans, 1950- (2)
Figge, S (2)
Haskell, B A (2)
Fini, P T (2)
Nakamura, S (2)
Hsiao, Ching-Lien (2)
Mock, Alyssa (2)
Kang, Evan S. H. (2)
Carlin, J-F (2)
Grandjean, N. (2)
visa färre...
Lärosäte
Linköpings universitet (59)
Lunds universitet (4)
Kungliga Tekniska Högskolan (1)
Chalmers tekniska högskola (1)
Språk
Engelska (59)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (27)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy