SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Darnell M) "

Search: WFRF:(Darnell M)

  • Result 1-19 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Lau, Allison N., et al. (author)
  • Dissecting cell-type-specific metabolism in pancreatic ductal adenocarcinoma
  • 2020
  • In: eLife. - 2050-084X. ; 9, s. 1-35
  • Journal article (peer-reviewed)abstract
    • Tumors are composed of many different cell types including cancer cells, fibroblasts, and immune cells. Dissecting functional metabolic differences between cell types within a mixed population can be challenging due to the rapid turnover of metabolites relative to the time needed to isolate cells. To overcome this challenge, we traced isotope-labeled nutrients into macromolecules that turn over more slowly than metabolites. This approach was used to assess differences between cancer cell and fibroblast metabolism in murine pancreatic cancer organoid-fibroblast co-cultures and tumors. Pancreatic cancer cells exhibited increased pyruvate carboxylation relative to fibroblasts, and this flux depended on both pyruvate carboxylase and malic enzyme 1 activity. Consequently, expression of both enzymes in cancer cells was necessary for organoid and tumor growth, demonstrating that dissecting the metabolism of specific cell populations within heterogeneous systems can identify dependencies that may not be evident from studying isolated cells in culture or bulk tissue.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Gherm, VE, et al. (author)
  • Wideband scattering functions for HF ionospheric propagation channels
  • 2001
  • In: Journal of Atmospheric and Solar-Terrestrial Physics. - 1364-6826 .- 1879-1824. ; 63:14, s. 1489-1497
  • Journal article (peer-reviewed)abstract
    • A physically based method has been developed to simulate the wideband HF ionospheric propagation channel relevant to the case of wideband spread spectrum HF communications and also other HF applications such as digital broadcasting and over-the-horizon radar, It is based on the consideration and solution of the equations governing pulse signal propagation through a fluctuating time varying random ionosphere. The wideband scattering function has been constructed as the appropriate Fourier transform of the correlation function of a channel impulse response. Numerical codes have been written, which allow numerical simulation of the wideband scattering function of the HF sky wave ionospheric fluctuation channel for any given model of the background ionosphere and time varying ionospheric turbulence with an anisotropic inverse power law spatial spectrum and frozen drift of the ionospheric inhomogeneitics. When employed in the simulation of the scattering function for real conditions of propagation, the method provides the possibility of analysing the propagation effects for different relative bandwidths of the background channel, fluctuating channel and transmitted pulse. The effects of the transmitted pulse bandwidth and anisotropy of the irregularities have been studied. The numerical results have been obtained and presented, which demonstrate the contribution of the effects enumerated in the wideband scattering function of the HF ionospheric channel. (C) 2001 Elsevier Science Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-19 of 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view